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What are ultrafilters?

Definition.

Let F C P(N). Then, F is a filter iff:
o )¢ Fand Ne F.
o If Ac F and A C B then B € F.
o If A,Be Fthen ANB € F.
Let p € P(N). Then, p is an ultrafilter iff:
e pis a filter.
o If A€ P(N) then A € p or A° € p.

Intuition:
Filter — family of “large sets”, i.e. A — “large” iff A € F.

Ultrafilter — maximal filter: any set A C N is either “large”
(A € p) or “small” (A° € p) .
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What are ultrafilters?

Examples.

Example (Cofinite sets)

Declare A € F iff N\ A is finite. Then F is a filter, but not an
ultrafilter.

Example (Principal ultrafilter)

Fix a € N. Declare A € F iff a € A. Then F is a filter, and even an
ultrafilter.

Lemma
Q A filter is an ultrafilter if and only if it is a mazimal filter.
Q Any filter F can be extended to an ultrafilter p with F C p.

@ There exist ultrafilters which are not principal.
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What are ultrafilters?

Extra structure I.

Additional structure on the space of ultrafilters 3(N):

o Semigroup — well defined semigroup operation p + q,
p+ (¢+7) = (p+q) +r (almost canonical).

For A € P(N), declare Ae p+qiff {neN : A—n € q} € p where
A—-n={m : n+me A}

Warning: Care needed for non-commutative semigroups — but
can be done!
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What are ultrafilters?

Extra structure II.

Additional structure on the space of ultrafilters 5(N):
e Topological space — natural topological structure.
o Hausdorft,

e compact, 5
e homeomorphic to the Cech-Stone compactification of N.

Definition
For A € P(N), declare A C B(N) to be the set:

A={pepB(N) : Aep}.

We endow 3(N) with the topology generated by A (for A € P(N)) as
the basis of open sets. (i.e. open sets = unions of A’s)
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What are ultrafilters?

Extra structure III.

Additional structure on the space of ultrafilters 5(N):

o Left-topological semigroup:

o Group structure.
o Topological structure.
o The map p — p + ¢ is continuous.

o Extension of N — for n € N form a principal ultrafilter
f={Ae€P(N) : ne A}. Then, the map:

Nonw—ne f(N)

is an isomorphism. We can (and will) pretend that N C g(N).
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What are ultrafilters?

Complications.

Some complications:

o Not a commutative semigroup: p 4+ g # g + p. Even worse:
p € Z(B(N)) iff p is principal.

o Not a cancellative semigroup: p+ ¢ = p+r % g = r. There exist
non-trivial idempotents: p + p = p. (Ellis Theorem)

@ Not a semitopological semigroup: ¢ — p + ¢ is not continuous.
e Huge space: cardinality #5(N) = 2°. Far from metrizable.

e Not constructive: consistent with ZF that no non-trivial
ultrafilters exist.

o “Three-headed monster” (Jan van Mill).
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Application — generalised limits.

Situation: Z — topological Ty space, (x,) Tn € Z — sequence.

neN?
Problem: Limit lim z, does not have to exists (but we wish it did).
n—oo

Recall: Ordinary limits: lim,, z,, = z means: “for any W € Top(Z)
with z € W, there is ng such that {n e N : x,, € W} D [ng,00)”.

Common idea: the “limit” of z,, is z if for any W € Top(Z) with
z € W, it holds that {n € N : z,, € W} € F is “large”.

Solution: Generalised limits. Fix an (ultra)filter 7. Declare
F-lim, z, = z to mean: “for any W € Top(Z) with z € W, it holds
that {n e N : z, e W} e F”.

Example

Q@ If F = cofinite sets, then F-lim,, z, = lim,,_.oo Z,,
@ If F = principal ultrafilter at m, then F-lim, x,, = T.,.

@ If F = cofinite subsets of infinite L C N, then
F-lim, 2y, = limy, 00, ner Tn.
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Q If p is an ultrafilter on N, Z is a compact Hausdorff space, and
T, € Z, n € N then the generalised limit

p-lim x,,
n

always exists, and is unique.
@ The map x +— p-lim,, x, preserves coordinatewise operations, i.e.:

o p-limy(xn + yn) = (p-lim, x,) + (p-limy, yn)
o p-limy(zrn - Yn) = (p-limy, z,) - (p-lim, yr)
o p-lim, f(zn) = f (p-limy, z,,) for continuous f: Z =Y.
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Application — generalised limits.

Theorem

Q If p is an ultrafilter on N, Z is a compact Hausdorff space, and
T, € Z, n € N then the generalised limit

p-lim x,,
n

always exists, and is unique.

@ The map x +— p-lim,, x, preserves coordinatewise operations, i.e.:
o p-limy(xn + yn) = (p-lim, x,) + (p-limy, yn)

o p-limy(zrn - Yn) = (p-limy, z,) - (p-lim, yr)
o p-lim, f(zn) = f (p-limy, z,,) for continuous f: Z =Y.
@ The generalised limits and the algebraic structure are related by:
(p+ q)-limz,, = p-lim q -lim 4 ,.
n m n

In particular, if p+p = p (idempotent), then

D -li7rln Ty = [ -ligln D -liTan i
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Finite sums set: Let (2,,), .y € NV. Then define:

FS(x)z{le : I CN, O<#I<oo}

il
Example:

Q If z, = 10™ then FS(x) = integers with digits only 0 and 1.
Q If z,, = a € N then FS(z) = multiples of a.

Let A C N. Then:
Q@ A — IP-set iff for some sequence x we have FS(z) C A.
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Some combinatorics.

IP-sets

Finite sums set: Let (2,,), .y € NV. Then define:

FS(x)z{le : I CN, O<#I<oo}
iel
Example:
Q If z, = 10™ then FS(x) = integers with digits only 0 and 1.
Q If z,, = a € N then FS(z) = multiples of a.

Let A C N. Then:
Q@ A — IP-set iff for some sequence x we have FS(z) C A.
@ A — IP*-set iff for any IP-set B we have AN B = ().
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Hindman’s Theorem

Theorem (Galvin—Glazer)

Let A C N. The following are equivalent:
Q A — IP-set.
© Acp for somep € B(N) withp+p=p.

Jakub Konieczny Ultrafilters



Some combinatorics.

Hindman’s Theorem

Theorem (Galvin—Glazer)
Let A C N. The following are equivalent:
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Corollary (Hindman’s Theorem)
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Hindman’s Theorem

Theorem (Galvin—Glazer)
Let A C N. The following are equivalent:
Q A — IP-set.
@ A € p for some p € B(N) with p+p=p.

Corollary (Hindman’s Theorem)

Suppose that N = A1 U Ay U---U Ag. Then for some i, A; is an IP-set.
Moreover, suppose that B is an IP-set and B = By U By U --- U By.
Then for some j, B; is IP-set.

Corollary
Let A C N. The following are equivalent:
Q A — IP"-set.

Q@ Ae€p forallpe B(N) withp+p=p.

Jakub Konieczny Ultrafilters



Rotations on a circle.

A toy model.

Jakub Konieczny Ultrafilters



Rotations on a circle.

A toy model.

Dynamical system under consideration:
@ Space: torus T =R/Z ~ {|z| = 1}.
@ Transformations: rotations R, (t) =t + «, a € T.

@ o-algebra: Borel sets. Measure: Lebesgue/Haar.
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Rotations on a circle.

A toy model.

Dynamical system under consideration:
@ Space: torus T =R/Z ~ {|z| = 1}.
@ Transformations: rotations R, (t) =t + «, o € T.
@ o-algebra: Borel sets. Measure: Lebesgue/Haar.

Polynomials: the functions N — T of the form
r r 2
fn) =Y oxnF =RY .. RIR. (o), (ar€T)
k=0

Special case: if ap = cpa for k > 1, ¢, € Z then

f(n) = h(n)a+ ag = RM™ (ayp), h(n) = chnk.
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Rotations on a circle.

A toy model.
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Rotations on a circle.

A toy model.

Theorem (Bergelson)

Let f: N — T be a polynomial, f(0) =0. Let p € 5(N) be idemptent
(i.e. p+p=p). Then:
p-lim f(n) =0
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Rotations on a circle.

A toy model.

Theorem (Bergelson)

Let f: N — T be a polynomial, f(0) =0. Let p € 5(N) be idemptent
(i.e. p+p=p). Then:
p-lim f(n) =0

Dynamical interptetation: For € > 0, consider the set:
{neN : RMM(0) e (—e,e)}

is an IP*-set (= intersects any IP-set).
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Rotations on a circle.

A toy model.

Theorem (Bergelson)

Let f: N— T be a polynomial, f(0) =0. Let p € B(N) be idemptent
(i.e. p+p=p). Then:
p-lim f(n) =0

Dynamical interptetation: For € > 0, consider the set:
{neN : RMM(0) e (—e,e)}

is an IP*-set (= intersects any IP-set).

Real polynomials: Let g : R — R be a polynomial, g(0) = 0. Then
the set {n € N : dist(g(n),Z) < e} is IP*.
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Rotations on a circle.
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Theorem (Bergelson)
Let f: N— T be a polynomial, f(0) =0. Let p € B(N) be idemptent
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Rotations on a circle.

Theorem (Bergelson)

Let f: N— T be a polynomial, f(0) =0. Let p € S(N) be idemptent
(i.e. p+p=p). Then:
p-lim f(n) =0
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Rotations on a circle.

Theorem (Bergelson)

Let f: N— T be a polynomial, f(0) =0. Let p € S(N) be idemptent
(i.e. p+p=p). Then:
p-lim f(n) =0

Proof.

We use induction on deg f, case deg f = 0 being trivial.

Jakub Konieczny Ultrafilters



Rotations on a circle.

Theorem (Bergelson)

Let f: N— T be a polynomial, f(0) =0. Let p € S(N) be idemptent
(i.e. p+p=p). Then:
p-lim f(n) =0

Proof.
We use induction on deg f, case deg f = 0 being trivial. Define:

Anf(m) := f(n+m) = f(n) — f(m)
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Rotations on a circle.

Theorem (Bergelson)

Let f: N— T be a polynomial, f(0) =0. Let p € B(N) be idemptent
(i.e. p+p=p). Then:
p-lim f(n) =0
Proof.
We use induction on deg f, case deg f = 0 being trivial. Define:
Anf(m) := f(n+m) — f(n) — f(m)
Note that deg A, f < deg f and A, f(0) = 0.
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Rotations on a circle.

Theorem (Bergelson)

Let f: N— T be a polynomial, f(0) =0. Let p € B(N) be idemptent
(i.e. p+p=p). Then:
p-lim f(n) =0
Proof.
We use induction on deg f, case deg f = 0 being trivial. Define:
Anf(m) := f(n+m) — f(n) — f(m)
Note that deg A, f < deg f and A, f(0) = 0.

p-lim f(n) = p-limp-lim f(n + m) (idempotence)
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Rotations on a circle.

Theorem (Bergelson)

Let f: N— T be a polynomial, f(0) =0. Let p € B(N) be idemptent
(i.e. p+p=p). Then:
p-lim f(n) =0
Proof.
We use induction on deg f, case deg f = 0 being trivial. Define:
Anf(m) := f(n+m) — f(n) — f(m)
Note that deg A, f < deg f and A, f(0) = 0.

p-lim f(n) = p-limp-lim f(n + m) (idempotence)

= plimp-lim ( Anf(m) +f(n) + f(m) ) =2 (p-lim f(n)).

ind. ass. —0 one argument
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Rotations on a circle.

Theorem (Bergelson)

Let f: N— T be a polynomial, f(0) =0. Let p € B(N) be idemptent
(i.e. p+p=p). Then:
p-lim f(n) =0
Proof.
We use induction on deg f, case deg f = 0 being trivial. Define:
Anf(m) := f(n+m) — f(n) — f(m)
Note that deg A, f < deg f and A, f(0) = 0.

p-lim f(n) = p-limp-lim f(n + m) (idempotence)

= plimp-lim ( Anf(m) +f(n) + f(m) ) =2 (p-lim f(n)).

ind. ass. —0 one argument

Hence, p-lim, f(n) =0, Q.E.D.
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Dynamical systems.
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Dynamical systems.

Recall: Measure preserving system X constists of:
@ Compact topological space X.
@ o-algebra M and probability measure p.

@ Measure preserving transformation 7': X — X.
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Dynamical systems.

Recall: Measure preserving system X constists of:
@ Compact topological space X.
@ o-algebra M and probability measure p.

@ Measure preserving transformation 7': X — X.

Koopman operator: Ur(f) = f o T. Unitary operator on L?(X, 1)
(if T invertible).
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Dynamical systems.

Recall: Measure preserving system X constists of:
@ Compact topological space X.
@ o-algebra M and probability measure p.

@ Measure preserving transformation 7': X — X.

Koopman operator: Ur(f) = f o T. Unitary operator on L?(X, 1)
(if T invertible).

Return times: Take A € M, p(A) > 0. Consider the set:

E.={neN : p(ANT"A) > u(4)* —¢}
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Dynamical systems.

Recall: Measure preserving system X constists of:
@ Compact topological space X.
@ o-algebra M and probability measure p.

@ Measure preserving transformation 7': X — X.

Koopman operator: Ur(f) = f o T. Unitary operator on L?(X, 1)
(if T invertible).

Return times: Take A € M, p(A) > 0. Consider the set:
E.={neN : p(ANT"A) > u(4)* —¢}

General question: How large is E.? (for given X and A)
E.g. infinite? syndetic? IP*? etc.
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Dynamical systems.
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Dynamical systems.

Application of ultrafilters: Suppose that p-lim, U} = P is a
projection.
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Dynamical systems.

Application of ultrafilters: Suppose that p-lim, U} = P is a
projection. Then E. € p.
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Dynamical systems.

Application of ultrafilters: Suppose that p-lim, U} = P is a
projection. Then E. € p. Proof:

p-im p(ANT™"A) = p-lim (14, U0714) = (14, Pla)
= |PLAIPI1x 1?2 (PLla, 1x)? = (La, PLx)* = p(A)?

Hence, for p-many n’s: u(ANT"A) > u(A)? —e.
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Dynamical systems.

Application of ultrafilters: Suppose that p-lim, U} = P is a
projection. Then E. € p. Proof:

p-im p(ANT™"A) = p-lim (14, U0714) = (14, Pla)
= |PLAIPI1x 1?2 (PLla, 1x)? = (La, PLx)* = p(A)?

Hence, for p-many n’s: u(ANT"A) > u(A)? —e.

Theorem (Bergelson, Fustrenberg & McCutcheon; Schnell)

Let h € Z[z], h(0) =0, and let p € B(N) be idempotent. Then
h(n)

p-lim, U is a projection.
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Dynamical systems.

Application of ultrafilters: Suppose that p-lim, U} = P is a
projection. Then E. € p. Proof:

p-im p(ANT™"A) = p-lim (14, U0714) = (14, Pla)
= |PLAIPI1x 1?2 (PLla, 1x)? = (La, PLx)* = p(A)?

Hence, for p-many n’s: u(ANT"A) > u(A)? —e.

Theorem (Bergelson, Fustrenberg & McCutcheon; Schnell)

Let h € Z[z], h(0) =0, and let p € B(N) be idempotent. Then

p-lim, U;(n) 18 a projection.

Corollary

If F is an IP set, h is a polynomial with h(0) = 0, then h(F) N E. # 0.
Equivalently, for a given h € Z[z], h(0) = 0, the following set is IP*:

{n EN : p(ANT "M A) > u(A4)? - s}
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Dynamical systems.
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Dynamical systems.

Corollary

Let A C N be a set with positive Banach density d*(A) > 0, and let
h € Z|z], h(0) = 0. The set following set is IP*:

(neN : d*(AN(A— h(n))) > d*(A)? —}}
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Dynamical systems.

Corollary

Let A C N be a set with positive Banach density d*(A) > 0, and let
h € Z|z], h(0) = 0. The set following set is IP*:

(meN : d(AN(A— h(n))) > d*(A)? — e}}

Proof.

Furstenberg correspondence principle. O
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Dynamical systems.

Corollary

Let A C N be a set with positive Banach density d*(A) > 0, and let
h € Z|z], h(0) = 0. The set following set is IP*:

(meN : d(AN(A— h(n))) > d*(A)? — e}}

Proof.

Furstenberg correspondence principle. O

Further research:
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Dynamical systems.

Corollary
Let A C N be a set with positive Banach density d*(A) > 0, and let
h € Z|z], h(0) = 0. The set following set is IP*:

(meN : d(AN(A— h(n))) > d*(A)? — e}}

Proof.

Furstenberg correspondence principle. O

Further research:

@ Multiple recurrence or many transformations. E.g.
{neN: p(ANTy"AN...T;"A) > c} is IP* (even IP}).
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Dynamical systems.

Corollary
Let A C N be a set with positive Banach density d*(A) > 0, and let
h € Z|z], h(0) = 0. The set following set is IP*:

(meN : d(AN(A— h(n))) > d*(A)? — e}}

Proof.

Furstenberg correspondence principle. O

Further research:
@ Multiple recurrence or many transformations. E.g.
{neN: p(ANTy"AN...T;"A) > c} is IP* (even IP}).
© Mixing systems. E.g.
p-lim [ fo(@) f1 (T (2)) ... fro(Th)(2))du(x) =
J fdu [ fadp. .. [ frdp.
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Dynamical systems.

Corollary
Let A C N be a set with positive Banach density d*(A) > 0, and let
h € Z|z], h(0) = 0. The set following set is IP*:

(meN : d(AN(A— h(n))) > d*(A)? — e}}

Proof.

Furstenberg correspondence principle. O

Further research:
@ Multiple recurrence or many transformations. E.g.
{neN: p(ANTy"AN...T;"A) > c} is IP* (even IP}).
© Mixing systems. E.g.
p-lim [ fo(@) f1 (T (2)) ... fro(Th)(2))du(x) =
J fdu [ fadp. .. [ frdp.

@ C-sets (central) and D-sets; minimal and essential idempotents.
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Thank You
for your attention!

zny Ultrafilters



