Ultrafilters Applications in ergodic theory

Jakub Konieczny

Uniwersytet Jagielloński Vrije Universiteit Amsterdam, & Universiteit van Amsterdam University of Oxford

September 17, 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Definition.

Definition

Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$. Then, \mathcal{F} is a *filter* iff:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition.

Definition

Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$. Then, \mathcal{F} is a *filter* iff:

• $\emptyset \notin \mathcal{F}$ and $\mathbb{N} \in \mathcal{F}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition.

Definition

Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$. Then, \mathcal{F} is a *filter* iff:

- $\emptyset \notin \mathcal{F}$ and $\mathbb{N} \in \mathcal{F}$.
- If $A \in \mathcal{F}$ and $A \subset B$ then $B \in \mathcal{F}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Definition

Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$. Then, \mathcal{F} is a *filter* iff:

- $\emptyset \notin \mathcal{F}$ and $\mathbb{N} \in \mathcal{F}$.
- If $A \in \mathcal{F}$ and $A \subset B$ then $B \in \mathcal{F}$.
- If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 ○ の Q ()

Definition

Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$. Then, \mathcal{F} is a *filter* iff:

- $\emptyset \notin \mathcal{F}$ and $\mathbb{N} \in \mathcal{F}$.
- If $A \in \mathcal{F}$ and $A \subset B$ then $B \in \mathcal{F}$.
- If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.

Let $p \subset \mathcal{P}(\mathbb{N})$. Then, p is an *ultrafilter* iff:

Definition

Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$. Then, \mathcal{F} is a *filter* iff:

- $\emptyset \notin \mathcal{F}$ and $\mathbb{N} \in \mathcal{F}$.
- If $A \in \mathcal{F}$ and $A \subset B$ then $B \in \mathcal{F}$.
- If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.

Let $p \subset \mathcal{P}(\mathbb{N})$. Then, p is an *ultrafilter* iff:

- p is a filter.
- If $A \in \mathcal{P}(\mathbb{N})$ then $A \in p$ or $A^c \in p$.

Definition

Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$. Then, \mathcal{F} is a *filter* iff:

- $\emptyset \notin \mathcal{F}$ and $\mathbb{N} \in \mathcal{F}$.
- If $A \in \mathcal{F}$ and $A \subset B$ then $B \in \mathcal{F}$.
- If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.

Let $p \subset \mathcal{P}(\mathbb{N})$. Then, p is an *ultrafilter* iff:

- p is a filter.
- If $A \in \mathcal{P}(\mathbb{N})$ then $A \in p$ or $A^c \in p$.

Definition

Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$. Then, \mathcal{F} is a *filter* iff:

- $\emptyset \notin \mathcal{F}$ and $\mathbb{N} \in \mathcal{F}$.
- If $A \in \mathcal{F}$ and $A \subset B$ then $B \in \mathcal{F}$.
- If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.

Let $p \subset \mathcal{P}(\mathbb{N})$. Then, p is an *ultrafilter* iff:

- p is a filter.
- If $A \in \mathcal{P}(\mathbb{N})$ then $A \in p$ or $A^c \in p$.

Intuition:

Definition

Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$. Then, \mathcal{F} is a *filter* iff:

- $\emptyset \notin \mathcal{F}$ and $\mathbb{N} \in \mathcal{F}$.
- If $A \in \mathcal{F}$ and $A \subset B$ then $B \in \mathcal{F}$.
- If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.

Let $p \subset \mathcal{P}(\mathbb{N})$. Then, p is an *ultrafilter* iff:

- p is a filter.
- If $A \in \mathcal{P}(\mathbb{N})$ then $A \in p$ or $A^c \in p$.

Intuition:

Filter — family of "large sets", i.e. A — "large" iff $A \in \mathcal{F}$.

Definition

Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$. Then, \mathcal{F} is a *filter* iff:

- $\emptyset \notin \mathcal{F}$ and $\mathbb{N} \in \mathcal{F}$.
- If $A \in \mathcal{F}$ and $A \subset B$ then $B \in \mathcal{F}$.
- If $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.

Let $p \subset \mathcal{P}(\mathbb{N})$. Then, p is an *ultrafilter* iff:

- p is a filter.
- If $A \in \mathcal{P}(\mathbb{N})$ then $A \in p$ or $A^c \in p$.

Intuition:

Examples.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろくの

Example (Cofinite sets)

Declare $A \in \mathcal{F}$ iff $\mathbb{N} \setminus A$ is finite. Then \mathcal{F} is a filter, but not an ultrafilter.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example (Cofinite sets)

Declare $A \in \mathcal{F}$ iff $\mathbb{N} \setminus A$ is finite. Then \mathcal{F} is a filter, but not an ultrafilter.

Example (Principal ultrafilter)

Fix $a \in \mathbb{N}$. Declare $A \in \mathcal{F}$ iff $a \in A$. Then \mathcal{F} is a filter, and even an ultrafilter.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Example (Cofinite sets)

Declare $A \in \mathcal{F}$ iff $\mathbb{N} \setminus A$ is finite. Then \mathcal{F} is a filter, but not an ultrafilter.

Example (Principal ultrafilter)

Fix $a \in \mathbb{N}$. Declare $A \in \mathcal{F}$ iff $a \in A$. Then \mathcal{F} is a filter, and even an ultrafilter.

Lemma

Example (Cofinite sets)

Declare $A \in \mathcal{F}$ iff $\mathbb{N} \setminus A$ is finite. Then \mathcal{F} is a filter, but not an ultrafilter.

Example (Principal ultrafilter)

Fix $a \in \mathbb{N}$. Declare $A \in \mathcal{F}$ iff $a \in A$. Then \mathcal{F} is a filter, and even an ultrafilter.

Lemma

• A filter is an ultrafilter if and only if it is a maximal filter.

Example (Cofinite sets)

Declare $A \in \mathcal{F}$ iff $\mathbb{N} \setminus A$ is finite. Then \mathcal{F} is a filter, but not an ultrafilter.

Example (Principal ultrafilter)

Fix $a \in \mathbb{N}$. Declare $A \in \mathcal{F}$ iff $a \in A$. Then \mathcal{F} is a filter, and even an ultrafilter.

Lemma

- A filter is an ultrafilter if and only if it is a maximal filter.
- **2** Any filter \mathcal{F} can be extended to an ultrafilter p with $\mathcal{F} \subset p$.

Example (Cofinite sets)

Declare $A \in \mathcal{F}$ iff $\mathbb{N} \setminus A$ is finite. Then \mathcal{F} is a filter, but not an ultrafilter.

Example (Principal ultrafilter)

Fix $a \in \mathbb{N}$. Declare $A \in \mathcal{F}$ iff $a \in A$. Then \mathcal{F} is a filter, and even an ultrafilter.

Lemma

- A filter is an ultrafilter if and only if it is a maximal filter.
- **2** Any filter \mathcal{F} can be extended to an ultrafilter p with $\mathcal{F} \subset p$.
- There exist ultrafilters which are not principal.

Extra structure I.

Additional structure on the space of ultrafilters $\beta(\mathbb{N})$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Semigroup — well defined semigroup operation p + q, p + (q + r) = (p + q) + r (almost canonical).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

• Semigroup — well defined semigroup operation p + q, p + (q + r) = (p + q) + r (almost canonical).

Definition

For $A \in \mathcal{P}(\mathbb{N})$, declare $A \in p + q$ iff $\{n \in \mathbb{N} : A - n \in q\} \in p$ where $A - n = \{m : n + m \in A\}.$

• Semigroup — well defined semigroup operation p + q, p + (q + r) = (p + q) + r (almost canonical).

Definition

For $A \in \mathcal{P}(\mathbb{N})$, declare $A \in p + q$ iff $\{n \in \mathbb{N} : A - n \in q\} \in p$ where $A - n = \{m : n + m \in A\}.$

Warning: Care needed for *non*-commutative semigroups — but can be done!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

Extra structure II.

Additional structure on the space of ultrafilters $\beta(\mathbb{N})$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• **Topological space** — natural topological structure.

▲ロト ▲団ト ▲ヨト ▲ヨト 三国 - のへで

- **Topological space** natural topological structure.
 - Hausdorff,

▲ロト ▲団ト ▲ヨト ▲ヨト 三国 - のへで

- **Topological space** natural topological structure.
 - Hausdorff,
 - compact,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

- **Topological space** natural topological structure.
 - Hausdorff,
 - compact,
 - \bullet homeomorphic to the Čech-Stone compactification of $\mathbb N.$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

- **Topological space** natural topological structure.
 - Hausdorff,
 - compact,
 - homeomorphic to the Čech-Stone compactification of \mathbb{N} .

Definition

For $A \in \mathcal{P}(\mathbb{N})$, declare $\overline{A} \subset \beta(\mathbb{N})$ to be the set:

$$\bar{A} = \{ p \in \beta(\mathbb{N}) : A \in p \}.$$

We endow $\beta(\mathbb{N})$ with the topology generated by \overline{A} (for $A \in \mathcal{P}(\mathbb{N})$) as the basis of open sets. (i.e. open sets = unions of \overline{A} 's)

Extra structure III.

Additional structure on the space of ultrafilters $\beta(\mathbb{N})$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Left-topological semigroup:
 - Group structure.
 - Topological structure.
 - The map $p \mapsto p + q$ is continuous.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

- Left-topological semigroup:
 - Group structure.
 - Topological structure.
 - The map $p \mapsto p + q$ is continuous.
- Extension of \mathbb{N} for $n \in \mathbb{N}$ form a principal ultrafilter $\hat{n} = \{A \in \mathcal{P}(\mathbb{N}) : n \in A\}$. Then, the map:

 $\mathbb{N} \ni n \mapsto \hat{n} \in \beta(\mathbb{N})$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

is an isomorphism. We can (and will) pretend that $\mathbb{N} \subset \beta(\mathbb{N})$.

Complications.

Some complications:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Complications.

Some complications:

• Not a commutative semigroup: $p + q \neq q + p$. Even worse: $p \in \mathbb{Z}(\beta(\mathbb{N}))$ iff p is principal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Complications.

Some complications:

- Not a commutative semigroup: $p + q \neq q + p$. Even worse: $p \in \mathbb{Z}(\beta(\mathbb{N}))$ iff p is principal.
- Not a cancellative semigroup: $p + q = p + r \Rightarrow q = r$. There exist non-trivial idempotents: p + p = p. (Ellis Theorem)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Complications.

Some complications:

- Not a commutative semigroup: $p + q \neq q + p$. Even worse: $p \in \mathbb{Z}(\beta(\mathbb{N}))$ iff p is principal.
- Not a cancellative semigroup: $p + q = p + r \Rightarrow q = r$. There exist non-trivial idempotents: p + p = p. (Ellis Theorem)
- Not a semitopological semigroup: $q \mapsto p + q$ is not continuous.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

Complications.

Some complications:

- Not a commutative semigroup: $p + q \neq q + p$. Even worse: $p \in \mathbb{Z}(\beta(\mathbb{N}))$ iff p is principal.
- Not a cancellative semigroup: $p + q = p + r \Rightarrow q = r$. There exist non-trivial idempotents: p + p = p. (Ellis Theorem)
- Not a semitopological semigroup: $q \mapsto p + q$ is not continuous.
- Huge space: cardinality $\#\beta(\mathbb{N}) = 2^{\mathfrak{c}}$. Far from metrizable.

What are ultrafilters?

Complications.

Some complications:

- Not a commutative semigroup: $p + q \neq q + p$. Even worse: $p \in \mathbb{Z}(\beta(\mathbb{N}))$ iff p is principal.
- Not a cancellative semigroup: $p + q = p + r \Rightarrow q = r$. There exist non-trivial idempotents: p + p = p. (Ellis Theorem)
- Not a semitopological semigroup: $q \mapsto p + q$ is not continuous.
- **Huge** space: cardinality $\#\beta(\mathbb{N}) = 2^{\mathfrak{c}}$. Far from metrizable.
- Not constructive: consistent with ZF that no non-trivial ultrafilters exist.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

What are ultrafilters?

Complications.

Some complications:

- Not a commutative semigroup: $p + q \neq q + p$. Even worse: $p \in \mathbb{Z}(\beta(\mathbb{N}))$ iff p is principal.
- Not a cancellative semigroup: $p + q = p + r \Rightarrow q = r$. There exist non-trivial idempotents: p + p = p. (Ellis Theorem)
- Not a semitopological semigroup: $q \mapsto p + q$ is not continuous.
- Huge space: cardinality $\#\beta(\mathbb{N}) = 2^{\mathfrak{c}}$. Far from metrizable.
- Not constructive: consistent with ZF that no non-trivial ultrafilters exist.
- "Three-headed monster" (Jan van Mill).

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Situation: Z — topological T_2 space, $(x_n)_{n \in \mathbb{N}}, x_n \in \mathbb{Z}$ — sequence.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Situation: Z — topological T_2 space, $(x_n)_{n \in \mathbb{N}}$, $x_n \in Z$ — sequence. **Problem:** Limit $\lim_{n \to \infty} x_n$ does not have to exists (but we wish it did).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Situation: Z — topological T_2 space, $(x_n)_{n\in\mathbb{N}}, x_n\in Z$ — sequence. **Problem:** Limit $\lim_{n\to\infty} x_n$ does not have to exists (but we wish it did). **Recall:** Ordinary limits: $\lim_n x_n = z$ means: "for any $W \in \operatorname{Top}(Z)$ with $z \in W$, there is n_0 such that $\{n \in \mathbb{N} : x_n \in W\} \supset [n_0, \infty)$ ".

Situation: Z — topological T_2 space, $(x_n)_{n\in\mathbb{N}}, x_n \in Z$ — sequence. **Problem:** Limit $\lim_{n\to\infty} x_n$ does not have to exists (but we wish it did). **Recall:** Ordinary limits: $\lim_{n\to\infty} x_n = z$ means: "for any $W \in \operatorname{Top}(Z)$ with $z \in W$, there is n_0 such that $\{n \in \mathbb{N} : x_n \in W\} \supset [n_0, \infty)$ ". **Common idea:** the "limit" of x_n is z if for any $W \in \operatorname{Top}(Z)$ with $z \in W$, it holds that $\{n \in \mathbb{N} : x_n \in W\} \in \mathcal{F}$ is "large".

Situation: Z — topological T_2 space, $(x_n)_{n\in\mathbb{N}}, x_n\in Z$ — sequence. **Problem:** Limit $\lim_{n\to\infty} x_n$ does not have to exists (but we wish it did). **Recall:** Ordinary limits: $\lim_n x_n = z$ means: "for any $W \in \operatorname{Top}(Z)$ with $z \in W$, there is n_0 such that $\{n \in \mathbb{N} : x_n \in W\} \supset [n_0, \infty)$ ". **Common idea:** the "limit" of x_n is z if for any $W \in \operatorname{Top}(Z)$ with $z \in W$, it holds that $\{n \in \mathbb{N} : x_n \in W\} \in \mathcal{F}$ is "large".

Solution: Generalised limits. Fix an (ultra)filter \mathcal{F} . Declare \mathcal{F} -lim_n $x_n = z$ to mean: "for any $W \in \text{Top}(Z)$ with $z \in W$, it holds that $\{n \in \mathbb{N} : x_n \in W\} \in \mathcal{F}$ ".

▲ロト ▲団ト ▲ヨト ▲ヨト 三国 - のへで

Situation: Z — topological T_2 space, $(x_n)_{n\in\mathbb{N}}, x_n \in Z$ — sequence. Problem: Limit $\lim_{n\to\infty} x_n$ does not have to exists (but we wish it did). Recall: Ordinary limits: $\lim_n x_n = z$ means: "for any $W \in \operatorname{Top}(Z)$ with $z \in W$, there is n_0 such that $\{n \in \mathbb{N} : x_n \in W\} \supset [n_0, \infty)$ ". Common idea: the "limit" of x_n is z if for any $W \in \operatorname{Top}(Z)$ with $z \in W$, it holds that $\{n \in \mathbb{N} : x_n \in W\} \in \mathcal{F}$ is "large".

Solution: Generalised limits. Fix an (ultra)filter \mathcal{F} . Declare \mathcal{F} -lim_n $x_n = z$ to mean: "for any $W \in \text{Top}(Z)$ with $z \in W$, it holds that $\{n \in \mathbb{N} : x_n \in W\} \in \mathcal{F}$ ".

Example

Situation: Z — topological T_2 space, $(x_n)_{n\in\mathbb{N}}, x_n \in Z$ — sequence. **Problem:** Limit $\lim_{n\to\infty} x_n$ does not have to exists (but we wish it did). **Recall:** Ordinary limits: $\lim_n x_n = z$ means: "for any $W \in \operatorname{Top}(Z)$ with $z \in W$, there is n_0 such that $\{n \in \mathbb{N} : x_n \in W\} \supset [n_0, \infty)$ ". **Common idea:** the "limit" of x_n is z if for any $W \in \operatorname{Top}(Z)$ with $z \in W$, it holds that $\{n \in \mathbb{N} : x_n \in W\} \in \mathcal{F}$ is "large".

Solution: Generalised limits. Fix an (ultra)filter \mathcal{F} . Declare \mathcal{F} -lim_n $x_n = z$ to mean: "for any $W \in \text{Top}(Z)$ with $z \in W$, it holds that $\{n \in \mathbb{N} : x_n \in W\} \in \mathcal{F}$ ".

Example

• If $\mathcal{F} = \text{cofinite sets}$, then $\mathcal{F} - \lim_n x_n = \lim_{n \to \infty} x_n$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Situation: Z — topological T_2 space, $(x_n)_{n\in\mathbb{N}}, x_n \in Z$ — sequence. **Problem:** Limit $\lim_{n\to\infty} x_n$ does not have to exists (but we wish it did). **Recall:** Ordinary limits: $\lim_n x_n = z$ means: "for any $W \in \operatorname{Top}(Z)$ with $z \in W$, there is n_0 such that $\{n \in \mathbb{N} : x_n \in W\} \supset [n_0, \infty)$ ". **Common idea:** the "limit" of x_n is z if for any $W \in \operatorname{Top}(Z)$ with $z \in W$, it holds that $\{n \in \mathbb{N} : x_n \in W\} \in \mathcal{F}$ is "large".

Solution: Generalised limits. Fix an (ultra)filter \mathcal{F} . Declare \mathcal{F} -lim_n $x_n = z$ to mean: "for any $W \in \text{Top}(Z)$ with $z \in W$, it holds that $\{n \in \mathbb{N} : x_n \in W\} \in \mathcal{F}$ ".

Example

- If $\mathcal{F} = \text{cofinite sets}$, then $\mathcal{F} \lim_n x_n = \lim_{n \to \infty} x_n$
- **2** If $\mathcal{F} = \text{principal ultrafilter at } m$, then $\mathcal{F} \lim_n x_n = x_m$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Situation: Z — topological T_2 space, $(x_n)_{n \in \mathbb{N}}$, $x_n \in Z$ — sequence. **Problem:** Limit $\lim_{n \to \infty} x_n$ does not have to exists (but we wish it did). **Recall:** Ordinary limits: $\lim_n x_n = z$ means: "for any $W \in \operatorname{Top}(Z)$ with $z \in W$, there is n_0 such that $\{n \in \mathbb{N} : x_n \in W\} \supset [n_0, \infty)$ ". **Common idea:** the "limit" of x_n is z if for any $W \in \operatorname{Top}(Z)$ with $z \in W$, it holds that $\{n \in \mathbb{N} : x_n \in W\} \in \mathcal{F}$ is "large".

Solution: Generalised limits. Fix an (ultra)filter \mathcal{F} . Declare \mathcal{F} -lim_n $x_n = z$ to mean: "for any $W \in \text{Top}(Z)$ with $z \in W$, it holds that $\{n \in \mathbb{N} : x_n \in W\} \in \mathcal{F}$ ".

Example

- If $\mathcal{F} = \text{cofinite sets}$, then $\mathcal{F} \lim_n x_n = \lim_{n \to \infty} x_n$
- **2** If $\mathcal{F} = \text{principal ultrafilter at } m$, then $\mathcal{F} \text{-lim}_n x_n = x_m$.
- If \mathcal{F} = cofinite subsets of infinite $L \subset \mathbb{N}$, then \mathcal{F} -lim_n $x_n = \lim_{n \to \infty, n \in L} x_n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Theorem

Theorem

 If p is an ultrafilter on N, Z is a compact Hausdorff space, and x_n ∈ Z, n ∈ N then the generalised limit

 $p - \lim_n x_n$

always exists, and is unique.

Theorem

 If p is an ultrafilter on N, Z is a compact Hausdorff space, and x_n ∈ Z, n ∈ N then the generalised limit

$$p - \lim_n x_n$$

always exists, and is unique.

- **2** The map $x \mapsto p$ -lim_n x_n preserves coordinatewise operations, i.e.:
 - $p \lim_{n \to \infty} (x_n + y_n) = (p \lim_{n \to \infty} x_n) + (p \lim_{n \to \infty} y_n)$
 - $p \lim_n (x_n \cdot y_n) = (p \lim_n x_n) \cdot (p \lim_n y_n)$
 - $p \operatorname{-lim}_n f(x_n) = f(p \operatorname{-lim}_n x_n)$ for continuous $f: Z \to Y$.

Theorem

 If p is an ultrafilter on N, Z is a compact Hausdorff space, and x_n ∈ Z, n ∈ N then the generalised limit

$$p - \lim_n x_n$$

always exists, and is unique.

IP-sets

Finite sums set: Let $(x_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$. Then define:

$$\mathrm{FS}(x) = \left\{ \sum_{i \in I} x_i \ : \ I \subset \mathbb{N}, \ 0 < \#I < \infty \right\}$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● のへで

Finite sums set: Let $(x_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$. Then define:

$$\mathrm{FS}(x) = \left\{ \sum_{i \in I} x_i \ : \ I \subset \mathbb{N}, \ 0 < \#I < \infty \right\}$$

Example:

IP-sets

- If $x_n = 10^n$ then FS(x) = integers with digits only 0 and 1.
- **2** If $x_n = a \in \mathbb{N}$ then FS(x) = multiples of a.

Finite sums set: Let $(x_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$. Then define:

$$\mathrm{FS}(x) = \left\{ \sum_{i \in I} x_i \ : \ I \subset \mathbb{N}, \ 0 < \#I < \infty \right\}$$

Example:

IP-sets

- If $x_n = 10^n$ then FS(x) = integers with digits only 0 and 1.
- **2** If $x_n = a \in \mathbb{N}$ then FS(x) = multiples of a.

Definition

Let $A \subset \mathbb{N}$. Then:

IP-sets

Finite sums set: Let $(x_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$. Then define:

$$\mathrm{FS}(x) = \left\{ \sum_{i \in I} x_i \ : \ I \subset \mathbb{N}, \ 0 < \#I < \infty \right\}$$

Example:

- If $x_n = 10^n$ then FS(x) = integers with digits only 0 and 1.
- **2** If $x_n = a \in \mathbb{N}$ then FS(x) = multiples of a.

Definition

Let $A \subset \mathbb{N}$. Then:

9 A — IP-set iff for some sequence x we have $FS(x) \subset A$.

IP-sets

Finite sums set: Let $(x_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$. Then define:

$$\mathrm{FS}(x) = \left\{ \sum_{i \in I} x_i \ : \ I \subset \mathbb{N}, \ 0 < \#I < \infty \right\}$$

Example:

- If $x_n = 10^n$ then FS(x) = integers with digits only 0 and 1.
- **2** If $x_n = a \in \mathbb{N}$ then FS(x) = multiples of a.

Definition

Let $A \subset \mathbb{N}$. Then:

- **9** A IP-set iff for some sequence x we have $FS(x) \subset A$.
- **2** $A \longrightarrow \mathsf{IP}^*$ -set iff for any IP -set B we have $A \cap B \neq \emptyset$.

Hindman's Theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Hindman's Theorem

Theorem (Galvin–Glazer)

Let $A \subset \mathbb{N}$. The following are equivalent:

- $1 A \mathsf{IP}\text{-set.}$
- **2** $A \in p$ for some $p \in \beta(\mathbb{N})$ with p + p = p.

Hindman's Theorem

Theorem (Galvin–Glazer)

Let $A \subset \mathbb{N}$. The following are equivalent:

- $1 A \mathsf{IP}\text{-set.}$
- $\ \, {\it Omega} \ A\in p \ for \ some \ p\in \beta(\mathbb{N}) \ with \ p+p=p.$

Corollary (Hindman's Theorem)

Suppose that $\mathbb{N} = A_1 \cup A_2 \cup \cdots \cup A_k$. Then for some *i*, A_i is an IP-set. Moreover, suppose that *B* is an IP-set and $B = B_1 \cup B_2 \cup \cdots \cup B_l$. Then for some *j*, B_j is IP-set.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

Hindman's Theorem

Theorem (Galvin–Glazer)

Let $A \subset \mathbb{N}$. The following are equivalent:

- $\bigcirc A \mathsf{IP}$ -set.
- **2** $A \in p$ for some $p \in \beta(\mathbb{N})$ with p + p = p.

Corollary (Hindman's Theorem)

Suppose that $\mathbb{N} = A_1 \cup A_2 \cup \cdots \cup A_k$. Then for some *i*, A_i is an IP-set. Moreover, suppose that B is an IP-set and $B = B_1 \cup B_2 \cup \cdots \cup B_l$. Then for some j, B_j is IP-set.

Corollary

Let $A \subset \mathbb{N}$. The following are equivalent:

2
$$A \in p$$
 for all $p \in \beta(\mathbb{N})$ with $p + p = p$.

A toy model.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろくの

A toy model.

Dynamical system under consideration:

- Space: torus $\mathbb{T} = \mathbb{R}/\mathbb{Z} \simeq \{|z| = 1\}.$
- **2** Transformations: rotations $R_{\alpha}(t) = t + \alpha, \alpha \in \mathbb{T}$.
- 0 $\sigma\text{-algebra:}$ Borel sets. Measure: Lebesgue/Haar.

A toy model.

Dynamical system under consideration:

- Space: torus $\mathbb{T} = \mathbb{R}/\mathbb{Z} \simeq \{|z| = 1\}.$
- **2** Transformations: rotations $R_{\alpha}(t) = t + \alpha, \alpha \in \mathbb{T}$.
- 0 $\sigma\text{-algebra:}$ Borel sets. Measure: Lebesgue/Haar.

Polynomials: the functions $\mathbb{N} \to \mathbb{T}$ of the form

$$f(n) = \sum_{k=0}^{r} \alpha_k n^k$$

A toy model.

Dynamical system under consideration:

- Space: torus $\mathbb{T} = \mathbb{R}/\mathbb{Z} \simeq \{|z| = 1\}.$
- **2** Transformations: rotations $R_{\alpha}(t) = t + \alpha, \alpha \in \mathbb{T}$.
- 0 $\sigma\text{-algebra:}$ Borel sets. Measure: Lebesgue/Haar.

Polynomials: the functions $\mathbb{N} \to \mathbb{T}$ of the form

$$f(n) = \sum_{k=0}^{r} \alpha_k n^k = R_{\alpha_r}^{n^r} \dots R_{\alpha_2}^{n^2} R_{\alpha_1}^n(\alpha_0), \quad (\alpha_k \in \mathbb{T}).$$

A toy model.

Dynamical system under consideration:

- Space: torus $\mathbb{T} = \mathbb{R}/\mathbb{Z} \simeq \{|z| = 1\}.$
- 2 Transformations: rotations $R_{\alpha}(t) = t + \alpha, \alpha \in \mathbb{T}$.
- 0 $\sigma\text{-algebra:}$ Borel sets. Measure: Lebesgue/Haar.

Polynomials: the functions $\mathbb{N} \to \mathbb{T}$ of the form

$$f(n) = \sum_{k=0}^{r} \alpha_k n^k = R_{\alpha_r}^{n^r} \dots R_{\alpha_2}^{n^2} R_{\alpha_1}^n(\alpha_0), \quad (\alpha_k \in \mathbb{T}).$$

Special case: if $\alpha_k = c_k \alpha$ for $k \ge 1, c_k \in \mathbb{Z}$ then

$$f(n) = h(n)\alpha + \alpha_0 = R^{h(n)}_{\alpha}(\alpha_0), \qquad h(n) = \sum_{k=1}^r c_k n^k.$$

A toy model.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろくの

A toy model.

Theorem (Bergelson)

Let $f : \mathbb{N} \to \mathbb{T}$ be a polynomial, f(0) = 0. Let $p \in \beta(\mathbb{N})$ be idemptent (i.e. p + p = p). Then: $p - \lim_{n \to \infty} f(n) = 0$

A toy model.

Theorem (Bergelson)

Let $f : \mathbb{N} \to \mathbb{T}$ be a polynomial, f(0) = 0. Let $p \in \beta(\mathbb{N})$ be idemptent (i.e. p + p = p). Then: $p - \lim_{n} f(n) = 0$

Dynamical interptetation: For $\varepsilon > 0$, consider the set:

$$\{n \in \mathbb{N} : R^{h(n)}_{\alpha}(0) \in (-\varepsilon, \varepsilon)\}$$

is an IP^* -set (= intersects any IP-set).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

A toy model.

Theorem (Bergelson)

Let $f : \mathbb{N} \to \mathbb{T}$ be a polynomial, f(0) = 0. Let $p \in \beta(\mathbb{N})$ be idemptent (i.e. p + p = p). Then: $p - \lim_{n} f(n) = 0$

Dynamical interptetation: For $\varepsilon > 0$, consider the set:

$$\{n \in \mathbb{N} : R^{h(n)}_{\alpha}(0) \in (-\varepsilon, \varepsilon)\}$$

is an IP^* -set (= intersects any IP-set).

Real polynomials: Let $g : \mathbb{R} \to \mathbb{R}$ be a polynomial, g(0) = 0. Then the set $\{n \in \mathbb{N} : \operatorname{dist}(g(n), \mathbb{Z}) < \varepsilon\}$ is IP^* .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

Jakub Konieczny Ultrafilters

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろくの

Theorem (Bergelson)

Let $f : \mathbb{N} \to \mathbb{T}$ be a polynomial, f(0) = 0. Let $p \in \beta(\mathbb{N})$ be idemptent (i.e. p + p = p). Then: $p - \lim_{n} f(n) = 0$

Theorem (Bergelson)

Let $f : \mathbb{N} \to \mathbb{T}$ be a polynomial, f(0) = 0. Let $p \in \beta(\mathbb{N})$ be idemptent (i.e. p + p = p). Then: $p - \lim_{n} f(n) = 0$

Proof.

Theorem (Bergelson)

Let $f : \mathbb{N} \to \mathbb{T}$ be a polynomial, f(0) = 0. Let $p \in \beta(\mathbb{N})$ be idemptent (i.e. p + p = p). Then: $p - \lim_{n} f(n) = 0$

Proof.

We use induction on deg f, case deg f = 0 being trivial.

Theorem (Bergelson)

Let $f : \mathbb{N} \to \mathbb{T}$ be a polynomial, f(0) = 0. Let $p \in \beta(\mathbb{N})$ be idemptent (i.e. p + p = p). Then: $p - \lim_{n} f(n) = 0$

Proof.

We use induction on deg f, case deg f = 0 being trivial. Define:

$$\Delta_n f(m) := f(n+m) - f(n) - f(m)$$

Theorem (Bergelson)

Let $f : \mathbb{N} \to \mathbb{T}$ be a polynomial, f(0) = 0. Let $p \in \beta(\mathbb{N})$ be idemptent (i.e. p + p = p). Then: $p - \lim_{n \to \infty} f(n) = 0$

Proof.

We use induction on deg f, case deg f = 0 being trivial. Define:

$$\Delta_n f(m) := f(n+m) - f(n) - f(m)$$

Note that $\deg \Delta_n f < \deg f$ and $\Delta_n f(0) = 0$.

Theorem (Bergelson)

Let $f : \mathbb{N} \to \mathbb{T}$ be a polynomial, f(0) = 0. Let $p \in \beta(\mathbb{N})$ be idemptent (i.e. p + p = p). Then: $p - \lim_{n \to \infty} f(n) = 0$

Proof.

We use induction on deg f, case deg f = 0 being trivial. Define:

$$\Delta_n f(m) := f(n+m) - f(n) - f(m)$$

Note that $\deg \Delta_n f < \deg f$ and $\Delta_n f(0) = 0$.

 $p - \lim_{n} f(n) = p - \lim_{n} p - \lim_{m} f(n+m)$ (idempotence)

Theorem (Bergelson)

Let $f : \mathbb{N} \to \mathbb{T}$ be a polynomial, f(0) = 0. Let $p \in \beta(\mathbb{N})$ be idemptent (i.e. p + p = p). Then: $p - \lim_{n \to \infty} f(n) = 0$

Proof.

We use induction on deg f, case deg f = 0 being trivial. Define:

$$\Delta_n f(m) := f(n+m) - f(n) - f(m)$$

Note that $\deg \Delta_n f < \deg f$ and $\Delta_n f(0) = 0$.

$$p-\lim_{n} f(n) = p-\lim_{n} p-\lim_{m} f(n+m) \quad (\text{idempotence})$$
$$= p-\lim_{n} p-\lim_{m} \left(\underbrace{\Delta_{n} f(m)}_{\text{ind. ass. } \to 0} + \underbrace{f(n) + f(m)}_{\text{one argument}} \right) = 2 \cdot \left(p-\lim_{n} f(n) \right).$$

Theorem (Bergelson)

Let $f : \mathbb{N} \to \mathbb{T}$ be a polynomial, f(0) = 0. Let $p \in \beta(\mathbb{N})$ be idemptent (i.e. p + p = p). Then: $p - \lim_{n \to \infty} f(n) = 0$

Proof.

We use induction on deg f, case deg f = 0 being trivial. Define:

$$\Delta_n f(m) := f(n+m) - f(n) - f(m)$$

Note that $\deg \Delta_n f < \deg f$ and $\Delta_n f(0) = 0$.

$$p-\lim_{n} f(n) = p-\lim_{n} p-\lim_{m} f(n+m) \quad (\text{idempotence})$$
$$= p-\lim_{n} p-\lim_{m} \left(\underbrace{\Delta_{n}f(m)}_{\text{ind. ass. } \to 0} + \underbrace{f(n) + f(m)}_{\text{one argument}} \right) = 2 \cdot \left(p-\lim_{n} f(n) \right).$$

Hence, $p-\lim_n f(n) = 0$, Q.E.D.

Jakub Konieczny Ultrafilters

Recall: Measure preserving system \mathbf{X} constists of:

- Compact topological space X.
- **2** σ -algebra \mathcal{M} and probability measure μ .
- **③** Measure preserving transformation $T: X \to X$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

 ${\bf Recall:}$ Measure preserving system ${\bf X}$ constists of:

- **2** σ -algebra \mathcal{M} and probability measure μ .
- **③** Measure preserving transformation $T: X \to X$.

Koopman operator: $U_T(f) = f \circ T$. Unitary operator on $L^2(X, \mu)$ (if T invertible).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Recall: Measure preserving system \mathbf{X} constists of:

- Compact topological space X.
- **2** σ -algebra \mathcal{M} and probability measure μ .
- **③** Measure preserving transformation $T: X \to X$.

Koopman operator: $U_T(f) = f \circ T$. Unitary operator on $L^2(X, \mu)$ (if T invertible).

Return times: Take $A \in \mathcal{M}$, $\mu(A) > 0$. Consider the set:

$$E_{\varepsilon} = \left\{ n \in \mathbb{N} : \mu(A \cap T^{-n}A) > \mu(A)^2 - \varepsilon \right\}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Recall: Measure preserving system \mathbf{X} constists of:

- **2** σ -algebra \mathcal{M} and probability measure μ .
- **③** Measure preserving transformation $T: X \to X$.

Koopman operator: $U_T(f) = f \circ T$. Unitary operator on $L^2(X, \mu)$ (if T invertible).

Return times: Take $A \in \mathcal{M}$, $\mu(A) > 0$. Consider the set:

$$E_{\varepsilon} = \left\{ n \in \mathbb{N} : \mu(A \cap T^{-n}A) > \mu(A)^2 - \varepsilon \right\}$$

General question: How large is E_{ε} ? (for given **X** and A) E.g. infinite? syndetic? IP^* ? etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Jakub Konieczny Ultrafilters

Application of ultrafilters: Suppose that $p-\lim_n U_T^n = P$ is a projection.

Application of ultrafilters: Suppose that $p-\lim_n U_T^n = P$ is a projection. Then $E_{\varepsilon} \in p$.

Application of ultrafilters: Suppose that $p-\lim_n U_T^n = P$ is a projection. Then $E_{\varepsilon} \in p$. Proof:

$$p-\lim_{n} \mu(A \cap T^{-n}A) = p-\lim_{n} \langle 1_{A}, U_{T}^{n}1_{A} \rangle = \langle 1_{A}, P1_{A} \rangle$$
$$= \|P1_{A}\|^{2} \|1_{X}\|^{2} \ge \langle P1_{A}, 1_{X} \rangle^{2} = \langle 1_{A}, P1_{X} \rangle^{2} = \mu(A)^{2}$$

Hence, for *p*-many *n*'s: $\mu(A \cap T^{-n}A) > \mu(A)^2 - \varepsilon$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Application of ultrafilters: Suppose that $p-\lim_n U_T^n = P$ is a projection. Then $E_{\varepsilon} \in p$. Proof:

$$p-\lim_{n} \mu(A \cap T^{-n}A) = p-\lim_{n} \langle 1_{A}, U_{T}^{n}1_{A} \rangle = \langle 1_{A}, P1_{A} \rangle$$
$$= \|P1_{A}\|^{2} \|1_{X}\|^{2} \ge \langle P1_{A}, 1_{X} \rangle^{2} = \langle 1_{A}, P1_{X} \rangle^{2} = \mu(A)^{2}$$

Hence, for *p*-many *n*'s: $\mu(A \cap T^{-n}A) > \mu(A)^2 - \varepsilon$.

Theorem (Bergelson, Fustrenberg & McCutcheon; Schnell)

Let $h \in \mathbb{Z}[x]$, h(0) = 0, and let $p \in \beta(\mathbb{N})$ be idempotent. Then $p - \lim_n U_T^{h(n)}$ is a projection.

Application of ultrafilters: Suppose that $p-\lim_n U_T^n = P$ is a projection. Then $E_{\varepsilon} \in p$. Proof:

$$p-\lim_{n} \mu(A \cap T^{-n}A) = p-\lim_{n} \langle 1_{A}, U_{T}^{n}1_{A} \rangle = \langle 1_{A}, P1_{A} \rangle$$
$$= \|P1_{A}\|^{2} \|1_{X}\|^{2} \ge \langle P1_{A}, 1_{X} \rangle^{2} = \langle 1_{A}, P1_{X} \rangle^{2} = \mu(A)^{2}$$

Hence, for *p*-many *n*'s: $\mu(A \cap T^{-n}A) > \mu(A)^2 - \varepsilon$.

Theorem (Bergelson, Fustrenberg & McCutcheon; Schnell)

Let $h \in \mathbb{Z}[x]$, h(0) = 0, and let $p \in \beta(\mathbb{N})$ be idempotent. Then $p - \lim_n U_T^{h(n)}$ is a projection.

Corollary

If F is an IP set, h is a polynomial with h(0) = 0, then $h(F) \cap E_{\varepsilon} \neq \emptyset$. Equivalently, for a given $h \in \mathbb{Z}[x]$, h(0) = 0, the following set is IP^{*}:

$$\left\{n \in \mathbb{N} : \mu(A \cap T^{-h(n)}A) > \mu(A)^2 - \varepsilon\right\}$$

Jakub Konieczny Ultrafilters

Let $A \subset \mathbb{N}$ be a set with positive Banach density $d^*(A) > 0$, and let $h \in \mathbb{Z}[x], h(0) = 0$. The set following set is IP^* :

 $\{n \in \mathbb{N} : d^*(A \cap (A - h(n))) > d^*(A)^2 - \varepsilon\}\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Let $A \subset \mathbb{N}$ be a set with positive Banach density $d^*(A) > 0$, and let $h \in \mathbb{Z}[x], h(0) = 0$. The set following set is IP^* :

$$\{n \in \mathbb{N} : d^*(A \cap (A - h(n))) > d^*(A)^2 - \varepsilon\}\}$$

Proof.

Furstenberg correspondence principle.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → � < ♡ < ♡

Let $A \subset \mathbb{N}$ be a set with positive Banach density $d^*(A) > 0$, and let $h \in \mathbb{Z}[x], h(0) = 0$. The set following set is IP^* :

$$\{n \in \mathbb{N} : d^*(A \cap (A - h(n))) > d^*(A)^2 - \varepsilon\}\}$$

Proof.

Furstenberg correspondence principle.

Further research:

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

Let $A \subset \mathbb{N}$ be a set with positive Banach density $d^*(A) > 0$, and let $h \in \mathbb{Z}[x], h(0) = 0$. The set following set is IP^* :

$$\{n \in \mathbb{N} : d^*(A \cap (A - h(n))) > d^*(A)^2 - \varepsilon\}\}$$

Proof.

Furstenberg correspondence principle.

Further research:

• Multiple recurrence or many transformations. E.g. $\{n \in \mathbb{N} : \mu(A \cap T_1^{-n}A \cap \dots T_k^{-n}A) > c\}$ is IP^* (even IP_r^*).

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

Let $A \subset \mathbb{N}$ be a set with positive Banach density $d^*(A) > 0$, and let $h \in \mathbb{Z}[x], h(0) = 0$. The set following set is IP^* :

$$\{n \in \mathbb{N} : d^*(A \cap (A - h(n))) > d^*(A)^2 - \varepsilon\}\}$$

Proof.

Furstenberg correspondence principle.

Further research:

• Multiple recurrence or many transformations. E.g. $\{n \in \mathbb{N} : \mu(A \cap T_1^{-n}A \cap \dots T_k^{-n}A) > c\}$ is IP^* (even IP_r^*).

2 Mixing systems. E.g. $p-\lim \int f_0(x) f_1(T^{h_1(n)}(x)) \dots f_k(T^{h_k(n)}(x)) d\mu(x) = \int f_1 d\mu \int f_2 d\mu \dots \int f_k d\mu.$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

Corollarv

Let $A \subset \mathbb{N}$ be a set with positive Banach density $d^*(A) > 0$, and let $h \in \mathbb{Z}[x], h(0) = 0$. The set following set is IP^* :

$$\{n \in \mathbb{N} : d^*(A \cap (A - h(n))) > d^*(A)^2 - \varepsilon\}\}$$

Proof.

Furstenberg correspondence principle.

Further research:

Multiple recurrence or many transformations. E.g. $\{n \in \mathbb{N} : \mu(A \cap T_1^{-n}A \cap \dots T_k^{-n}A) > c\}$ is IP^* (even IP^*_r).

2 Mixing systems. E.g. $p-\lim_{k \to \infty} \int f_0(x) f_1(T^{h_1(n)}(x)) \dots f_k(T^{h_k(n)}(x)) d\mu(x) =$ $\int f_1 d\mu \int f_2 d\mu \dots \int f_k d\mu.$

O C-sets (central) and D-sets; minimal and essential idempotents.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Thank You for your attention!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → � < ♡ < ♡