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What are ultrafilters?
Definition.

Definition

Let F ⊂ P(N). Then, F is a filter iff:

∅ 6∈ F and N ∈ F .

If A ∈ F and A ⊂ B then B ∈ F .

If A,B ∈ F then A ∩B ∈ F .

Let p ⊂ P(N). Then, p is an ultrafilter iff:

p is a filter.

If A ∈ P(N) then A ∈ p or Ac ∈ p.

Intuition:

Filter — family of “large sets”, i.e. A — “large” iff A ∈ F .

Ultrafilter — maximal filter: any set A ⊂ N is either “large”
(A ∈ p) or “small” (Ac ∈ p) .

Jakub Konieczny Ultrafilters



What are ultrafilters?
Examples.

Jakub Konieczny Ultrafilters



What are ultrafilters?
Examples.

Example (Cofinite sets)

Declare A ∈ F iff N \A is finite. Then F is a filter, but not an
ultrafilter.

Jakub Konieczny Ultrafilters



What are ultrafilters?
Examples.

Example (Cofinite sets)

Declare A ∈ F iff N \A is finite. Then F is a filter, but not an
ultrafilter.

Example (Principal ultrafilter)

Fix a ∈ N. Declare A ∈ F iff a ∈ A. Then F is a filter, and even an
ultrafilter.

Jakub Konieczny Ultrafilters



What are ultrafilters?
Examples.

Example (Cofinite sets)

Declare A ∈ F iff N \A is finite. Then F is a filter, but not an
ultrafilter.

Example (Principal ultrafilter)

Fix a ∈ N. Declare A ∈ F iff a ∈ A. Then F is a filter, and even an
ultrafilter.

Lemma

Jakub Konieczny Ultrafilters



What are ultrafilters?
Examples.

Example (Cofinite sets)

Declare A ∈ F iff N \A is finite. Then F is a filter, but not an
ultrafilter.

Example (Principal ultrafilter)

Fix a ∈ N. Declare A ∈ F iff a ∈ A. Then F is a filter, and even an
ultrafilter.

Lemma
1 A filter is an ultrafilter if and only if it is a maximal filter.

Jakub Konieczny Ultrafilters



What are ultrafilters?
Examples.

Example (Cofinite sets)

Declare A ∈ F iff N \A is finite. Then F is a filter, but not an
ultrafilter.

Example (Principal ultrafilter)

Fix a ∈ N. Declare A ∈ F iff a ∈ A. Then F is a filter, and even an
ultrafilter.

Lemma
1 A filter is an ultrafilter if and only if it is a maximal filter.

2 Any filter F can be extended to an ultrafilter p with F ⊂ p.

Jakub Konieczny Ultrafilters



What are ultrafilters?
Examples.

Example (Cofinite sets)

Declare A ∈ F iff N \A is finite. Then F is a filter, but not an
ultrafilter.

Example (Principal ultrafilter)

Fix a ∈ N. Declare A ∈ F iff a ∈ A. Then F is a filter, and even an
ultrafilter.

Lemma
1 A filter is an ultrafilter if and only if it is a maximal filter.

2 Any filter F can be extended to an ultrafilter p with F ⊂ p.

3 There exist ultrafilters which are not principal.
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Extra structure I.

Additional structure on the space of ultrafilters β(N):

Semigroup — well defined semigroup operation p+ q,
p+ (q + r) = (p+ q) + r (almost canonical).

Definition

For A ∈ P(N), declare A ∈ p+ q iff {n ∈ N : A− n ∈ q} ∈ p where
A− n = {m : n+m ∈ A}.

Warning: Care needed for non-commutative semigroups — but
can be done!
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What are ultrafilters?
Extra structure II.

Additional structure on the space of ultrafilters β(N):

Topological space — natural topological structure.

Hausdorff,
compact,
homeomorphic to the Čech-Stone compactification of N.

Definition

For A ∈ P(N), declare Ā ⊂ β(N) to be the set:

Ā = {p ∈ β(N) : A ∈ p}.

We endow β(N) with the topology generated by Ā (for A ∈ P(N)) as
the basis of open sets. (i.e. open sets = unions of Ā’s)
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What are ultrafilters?
Extra structure III.

Additional structure on the space of ultrafilters β(N):

Left-topological semigroup:

Group structure.
Topological structure.
The map p 7→ p+ q is continuous.

Extension of N — for n ∈ N form a principal ultrafilter
n̂ = {A ∈ P(N) : n ∈ A}. Then, the map:

N ∋ n 7→ n̂ ∈ β(N)

is an isomorphism. We can (and will) pretend that N ⊂ β(N).
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What are ultrafilters?
Complications.

Some complications:

Not a commutative semigroup: p+ q 6= q + p. Even worse:
p ∈ Z(β(N)) iff p is principal.

Not a cancellative semigroup: p+ q = p+ r 6⇒ q = r. There exist
non-trivial idempotents: p+ p = p. (Ellis Theorem)

Not a semitopological semigroup: q 7→ p+ q is not continuous.

Huge space: cardinality #β(N) = 2c. Far from metrizable.

Not constructive: consistent with ZF that no non-trivial
ultrafilters exist.

“Three-headed monster” (Jan van Mill).
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1 If F = cofinite sets, then F -limn xn = limn→∞ xn
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Application — generalised limits.

Situation: Z — topological T2 space, (xn)n∈N
, xn ∈ Z — sequence.

Problem: Limit lim
n→∞

xn does not have to exists (but we wish it did).

Recall: Ordinary limits: limn xn = z means: “for any W ∈ Top(Z)
with z ∈ W , there is n0 such that {n ∈ N : xn ∈ W} ⊃ [n0,∞)”.

Common idea: the “limit” of xn is z if for any W ∈ Top(Z) with
z ∈ W , it holds that {n ∈ N : xn ∈ W} ∈ F is “large”.

Solution: Generalised limits. Fix an (ultra)filter F . Declare
F -limn xn = z to mean: “for any W ∈ Top(Z) with z ∈ W , it holds
that {n ∈ N : xn ∈ W} ∈ F”.

Example
1 If F = cofinite sets, then F -limn xn = limn→∞ xn

2 If F = principal ultrafilter at m, then F -limn xn = xm.
3 If F = cofinite subsets of infinite L ⊂ N, then

F -limn xn = limn→∞, n∈L xn.
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xn ∈ Z, n ∈ N then the generalised limit

p -lim
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xn

always exists, and is unique.

Jakub Konieczny Ultrafilters



Application — generalised limits.

Theorem
1 If p is an ultrafilter on N, Z is a compact Hausdorff space, and

xn ∈ Z, n ∈ N then the generalised limit

p -lim
n

xn

always exists, and is unique.
2 The map x 7→ p -limn xn preserves coordinatewise operations, i.e.:

p -limn(xn + yn) = (p -limn xn) + (p -limn yn)
p -limn(xn · yn) = (p -limn xn) · (p -limn yn)
p -limn f(xn) = f (p -limn xn) for continuous f : Z → Y .
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Application — generalised limits.

Theorem
1 If p is an ultrafilter on N, Z is a compact Hausdorff space, and

xn ∈ Z, n ∈ N then the generalised limit

p -lim
n

xn

always exists, and is unique.
2 The map x 7→ p -limn xn preserves coordinatewise operations, i.e.:

p -limn(xn + yn) = (p -limn xn) + (p -limn yn)
p -limn(xn · yn) = (p -limn xn) · (p -limn yn)
p -limn f(xn) = f (p -limn xn) for continuous f : Z → Y .

3 The generalised limits and the algebraic structure are related by:

(p+ q) -lim
n

xn = p -lim
m

q -lim
n

xn+m.

In particular, if p+ p = p (idempotent), then

p -lim
n

xn = p -lim
m

p -lim
n

xn+m.
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Some combinatorics.
IP-sets

Finite sums set: Let (xn)n∈N
∈ N

N. Then define:

FS(x) =

{

∑

i∈I

xi : I ⊂ N, 0 < #I < ∞

}
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2 If xn = a ∈ N then FS(x) = multiples of a.
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IP-sets

Finite sums set: Let (xn)n∈N
∈ N

N. Then define:

FS(x) =

{

∑

i∈I

xi : I ⊂ N, 0 < #I < ∞

}

Example:

1 If xn = 10n then FS(x) = integers with digits only 0 and 1.

2 If xn = a ∈ N then FS(x) = multiples of a.

Definition

Let A ⊂ N. Then:
1 A — IP-set iff for some sequence x we have FS(x) ⊂ A.
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Some combinatorics.
IP-sets

Finite sums set: Let (xn)n∈N
∈ N

N. Then define:

FS(x) =

{

∑

i∈I

xi : I ⊂ N, 0 < #I < ∞

}

Example:

1 If xn = 10n then FS(x) = integers with digits only 0 and 1.

2 If xn = a ∈ N then FS(x) = multiples of a.

Definition

Let A ⊂ N. Then:
1 A — IP-set iff for some sequence x we have FS(x) ⊂ A.
2 A — IP

∗-set iff for any IP-set B we have A ∩B 6= ∅.
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Some combinatorics.
Hindman’s Theorem

Theorem (Galvin–Glazer)

Let A ⊂ N. The following are equivalent:

1 A — IP-set.

2 A ∈ p for some p ∈ β(N) with p+ p = p.
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Theorem (Galvin–Glazer)

Let A ⊂ N. The following are equivalent:

1 A — IP-set.

2 A ∈ p for some p ∈ β(N) with p+ p = p.

Corollary (Hindman’s Theorem)

Suppose that N = A1 ∪A2 ∪ · · · ∪Ak. Then for some i, Ai is an IP-set.
Moreover, suppose that B is an IP-set and B = B1 ∪B2 ∪ · · · ∪Bl.
Then for some j, Bj is IP-set.
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Let A ⊂ N. The following are equivalent:

1 A — IP-set.

2 A ∈ p for some p ∈ β(N) with p+ p = p.

Corollary (Hindman’s Theorem)

Suppose that N = A1 ∪A2 ∪ · · · ∪Ak. Then for some i, Ai is an IP-set.
Moreover, suppose that B is an IP-set and B = B1 ∪B2 ∪ · · · ∪Bl.
Then for some j, Bj is IP-set.

Corollary

Let A ⊂ N. The following are equivalent:

1 A — IP
∗-set.

2 A ∈ p for all p ∈ β(N) with p+ p = p.
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A toy model.

Dynamical system under consideration:
1 Space: torus T = R/Z ≃ {|z| = 1}.
2 Transformations: rotations Rα(t) = t+ α, α ∈ T.
3 σ-algebra: Borel sets. Measure: Lebesgue/Haar.
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Rotations on a circle.
A toy model.

Dynamical system under consideration:
1 Space: torus T = R/Z ≃ {|z| = 1}.
2 Transformations: rotations Rα(t) = t+ α, α ∈ T.
3 σ-algebra: Borel sets. Measure: Lebesgue/Haar.

Polynomials: the functions N → T of the form

f(n) =

r
∑

k=0

αkn
k = Rnr

αr
. . . Rn2

α2
Rn

α1
(α0), (αk ∈ T).

Special case: if αk = ckα for k ≥ 1, ck ∈ Z then

f(n) = h(n)α+ α0 = Rh(n)
α (α0), h(n) =

r
∑

k=1

ckn
k.

Jakub Konieczny Ultrafilters



Rotations on a circle.
A toy model.
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Rotations on a circle.
A toy model.

Theorem (Bergelson)

Let f : N → T be a polynomial, f(0) = 0. Let p ∈ β(N) be idemptent
(i.e. p+ p = p). Then:

p -lim
n

f(n) = 0
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Rotations on a circle.
A toy model.

Theorem (Bergelson)

Let f : N → T be a polynomial, f(0) = 0. Let p ∈ β(N) be idemptent
(i.e. p+ p = p). Then:

p -lim
n

f(n) = 0

Dynamical interptetation: For ε > 0, consider the set:

{n ∈ N : Rh(n)
α (0) ∈ (−ε, ε)}

is an IP
∗-set (= intersects any IP-set).
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Rotations on a circle.
A toy model.

Theorem (Bergelson)

Let f : N → T be a polynomial, f(0) = 0. Let p ∈ β(N) be idemptent
(i.e. p+ p = p). Then:

p -lim
n

f(n) = 0

Dynamical interptetation: For ε > 0, consider the set:

{n ∈ N : Rh(n)
α (0) ∈ (−ε, ε)}

is an IP
∗-set (= intersects any IP-set).

Real polynomials: Let g : R → R be a polynomial, g(0) = 0. Then
the set {n ∈ N : dist(g(n),Z) < ε} is IP

∗.
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Rotations on a circle.

Theorem (Bergelson)

Let f : N → T be a polynomial, f(0) = 0. Let p ∈ β(N) be idemptent
(i.e. p+ p = p). Then:

p -lim
n

f(n) = 0

Jakub Konieczny Ultrafilters



Rotations on a circle.

Theorem (Bergelson)

Let f : N → T be a polynomial, f(0) = 0. Let p ∈ β(N) be idemptent
(i.e. p+ p = p). Then:

p -lim
n

f(n) = 0

Proof.
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Rotations on a circle.

Theorem (Bergelson)

Let f : N → T be a polynomial, f(0) = 0. Let p ∈ β(N) be idemptent
(i.e. p+ p = p). Then:

p -lim
n

f(n) = 0

Proof.
We use induction on deg f , case deg f = 0 being trivial.
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Rotations on a circle.

Theorem (Bergelson)

Let f : N → T be a polynomial, f(0) = 0. Let p ∈ β(N) be idemptent
(i.e. p+ p = p). Then:

p -lim
n

f(n) = 0

Proof.
We use induction on deg f , case deg f = 0 being trivial. Define:

∆nf(m) := f(n+m)− f(n)− f(m)
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Rotations on a circle.

Theorem (Bergelson)

Let f : N → T be a polynomial, f(0) = 0. Let p ∈ β(N) be idemptent
(i.e. p+ p = p). Then:

p -lim
n

f(n) = 0

Proof.
We use induction on deg f , case deg f = 0 being trivial. Define:

∆nf(m) := f(n+m)− f(n)− f(m)

Note that deg∆nf < deg f and ∆nf(0) = 0.
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Rotations on a circle.

Theorem (Bergelson)

Let f : N → T be a polynomial, f(0) = 0. Let p ∈ β(N) be idemptent
(i.e. p+ p = p). Then:

p -lim
n

f(n) = 0

Proof.
We use induction on deg f , case deg f = 0 being trivial. Define:

∆nf(m) := f(n+m)− f(n)− f(m)

Note that deg∆nf < deg f and ∆nf(0) = 0.

p -lim
n

f(n) = p -lim
n

p -lim
m

f(n+m) (idempotence)
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Rotations on a circle.

Theorem (Bergelson)

Let f : N → T be a polynomial, f(0) = 0. Let p ∈ β(N) be idemptent
(i.e. p+ p = p). Then:

p -lim
n

f(n) = 0

Proof.
We use induction on deg f , case deg f = 0 being trivial. Define:

∆nf(m) := f(n+m)− f(n)− f(m)

Note that deg∆nf < deg f and ∆nf(0) = 0.

p -lim
n

f(n) = p -lim
n

p -lim
m

f(n+m) (idempotence)

= p -lim
n

p -lim
m

(

∆nf(m)
︸ ︷︷ ︸

ind. ass. →0

+ f(n) + f(m)
︸ ︷︷ ︸

one argument

)

= 2 ·
(
p -lim

n

f(n)
)
.
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Rotations on a circle.

Theorem (Bergelson)

Let f : N → T be a polynomial, f(0) = 0. Let p ∈ β(N) be idemptent
(i.e. p+ p = p). Then:

p -lim
n

f(n) = 0

Proof.
We use induction on deg f , case deg f = 0 being trivial. Define:

∆nf(m) := f(n+m)− f(n)− f(m)

Note that deg∆nf < deg f and ∆nf(0) = 0.

p -lim
n

f(n) = p -lim
n

p -lim
m

f(n+m) (idempotence)

= p -lim
n

p -lim
m

(

∆nf(m)
︸ ︷︷ ︸

ind. ass. →0

+ f(n) + f(m)
︸ ︷︷ ︸

one argument

)

= 2 ·
(
p -lim

n

f(n)
)
.

Hence, p -limn f(n) = 0, Q.E.D.
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Dynamical systems.

Recall: Measure preserving system X constists of:
1 Compact topological space X.
2 σ-algebra M and probability measure µ.
3 Measure preserving transformation T : X → X.
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Dynamical systems.

Recall: Measure preserving system X constists of:
1 Compact topological space X.
2 σ-algebra M and probability measure µ.
3 Measure preserving transformation T : X → X.

Koopman operator: UT (f) = f ◦ T . Unitary operator on L2(X,µ)
(if T invertible).
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Dynamical systems.

Recall: Measure preserving system X constists of:
1 Compact topological space X.
2 σ-algebra M and probability measure µ.
3 Measure preserving transformation T : X → X.

Koopman operator: UT (f) = f ◦ T . Unitary operator on L2(X,µ)
(if T invertible).

Return times: Take A ∈ M, µ(A) > 0. Consider the set:

Eε =
{

n ∈ N : µ(A ∩ T−nA) > µ(A)2 − ε
}
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Dynamical systems.

Recall: Measure preserving system X constists of:
1 Compact topological space X.
2 σ-algebra M and probability measure µ.
3 Measure preserving transformation T : X → X.

Koopman operator: UT (f) = f ◦ T . Unitary operator on L2(X,µ)
(if T invertible).

Return times: Take A ∈ M, µ(A) > 0. Consider the set:

Eε =
{

n ∈ N : µ(A ∩ T−nA) > µ(A)2 − ε
}

General question: How large is Eε? (for given X and A)

E.g. infinite? syndetic? IP
∗? etc.
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Dynamical systems.

Jakub Konieczny Ultrafilters



Dynamical systems.

Application of ultrafilters: Suppose that p -limn U
n
T = P is a

projection.
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Dynamical systems.

Application of ultrafilters: Suppose that p -limn U
n
T = P is a

projection. Then Eε ∈ p.
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Dynamical systems.

Application of ultrafilters: Suppose that p -limn U
n
T = P is a

projection. Then Eε ∈ p. Proof:

p -lim
n

µ(A ∩ T−nA) = p -lim
n

〈1A, U
n
T 1A〉 = 〈1A, P1A〉

= ‖P1A‖
2‖1X‖2 ≥ 〈P1A, 1X〉2 = 〈1A, P1X〉2 = µ(A)2

Hence, for p-many n’s: µ(A ∩ T−nA) > µ(A)2 − ε.
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Dynamical systems.

Application of ultrafilters: Suppose that p -limn U
n
T = P is a

projection. Then Eε ∈ p. Proof:

p -lim
n

µ(A ∩ T−nA) = p -lim
n

〈1A, U
n
T 1A〉 = 〈1A, P1A〉

= ‖P1A‖
2‖1X‖2 ≥ 〈P1A, 1X〉2 = 〈1A, P1X〉2 = µ(A)2

Hence, for p-many n’s: µ(A ∩ T−nA) > µ(A)2 − ε.

Theorem (Bergelson, Fustrenberg & McCutcheon; Schnell)

Let h ∈ Z[x], h(0) = 0, and let p ∈ β(N) be idempotent. Then

p -limn U
h(n)
T is a projection.
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Dynamical systems.

Application of ultrafilters: Suppose that p -limn U
n
T = P is a

projection. Then Eε ∈ p. Proof:

p -lim
n

µ(A ∩ T−nA) = p -lim
n

〈1A, U
n
T 1A〉 = 〈1A, P1A〉

= ‖P1A‖
2‖1X‖2 ≥ 〈P1A, 1X〉2 = 〈1A, P1X〉2 = µ(A)2

Hence, for p-many n’s: µ(A ∩ T−nA) > µ(A)2 − ε.

Theorem (Bergelson, Fustrenberg & McCutcheon; Schnell)

Let h ∈ Z[x], h(0) = 0, and let p ∈ β(N) be idempotent. Then

p -limn U
h(n)
T is a projection.

Corollary

If F is an IP set, h is a polynomial with h(0) = 0, then h(F )∩Eε 6= ∅.
Equivalently, for a given h ∈ Z[x], h(0) = 0, the following set is IP

∗:

{

n ∈ N : µ(A ∩ T−h(n)A) > µ(A)2 − ε
}
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Dynamical systems.
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Dynamical systems.

Corollary

Let A ⊂ N be a set with positive Banach density d∗(A) > 0, and let
h ∈ Z[x], h(0) = 0. The set following set is IP

∗:

{n ∈ N : d∗(A ∩ (A− h(n))) > d∗(A)2 − ε}}
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Dynamical systems.

Corollary

Let A ⊂ N be a set with positive Banach density d∗(A) > 0, and let
h ∈ Z[x], h(0) = 0. The set following set is IP

∗:

{n ∈ N : d∗(A ∩ (A− h(n))) > d∗(A)2 − ε}}

Proof.

Furstenberg correspondence principle.
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Dynamical systems.

Corollary

Let A ⊂ N be a set with positive Banach density d∗(A) > 0, and let
h ∈ Z[x], h(0) = 0. The set following set is IP

∗:

{n ∈ N : d∗(A ∩ (A− h(n))) > d∗(A)2 − ε}}

Proof.

Furstenberg correspondence principle.

Further research:
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Dynamical systems.

Corollary

Let A ⊂ N be a set with positive Banach density d∗(A) > 0, and let
h ∈ Z[x], h(0) = 0. The set following set is IP

∗:

{n ∈ N : d∗(A ∩ (A− h(n))) > d∗(A)2 − ε}}

Proof.

Furstenberg correspondence principle.

Further research:

1 Multiple recurrence or many transformations. E.g.
{

n ∈ N : µ(A ∩ T−n
1 A ∩ . . . T−n

k A) > c
}

is IP
∗ (even IP

∗

r).
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Dynamical systems.

Corollary

Let A ⊂ N be a set with positive Banach density d∗(A) > 0, and let
h ∈ Z[x], h(0) = 0. The set following set is IP

∗:

{n ∈ N : d∗(A ∩ (A− h(n))) > d∗(A)2 − ε}}

Proof.

Furstenberg correspondence principle.

Further research:

1 Multiple recurrence or many transformations. E.g.
{

n ∈ N : µ(A ∩ T−n
1 A ∩ . . . T−n

k A) > c
}

is IP
∗ (even IP

∗

r).
2 Mixing systems. E.g.

p -lim
∫

f0(x)f1(T
h1(n)(x)) . . . fk(T

hk(n)(x))dµ(x) =
∫

f1dµ
∫

f2dµ . . .
∫

fkdµ.
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Dynamical systems.

Corollary

Let A ⊂ N be a set with positive Banach density d∗(A) > 0, and let
h ∈ Z[x], h(0) = 0. The set following set is IP

∗:

{n ∈ N : d∗(A ∩ (A− h(n))) > d∗(A)2 − ε}}

Proof.

Furstenberg correspondence principle.

Further research:

1 Multiple recurrence or many transformations. E.g.
{

n ∈ N : µ(A ∩ T−n
1 A ∩ . . . T−n

k A) > c
}

is IP
∗ (even IP

∗

r).
2 Mixing systems. E.g.

p -lim
∫

f0(x)f1(T
h1(n)(x)) . . . fk(T

hk(n)(x))dµ(x) =
∫

f1dµ
∫

f2dµ . . .
∫

fkdµ.
3 C-sets (central) and D-sets; minimal and essential idempotents.
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Thank You

for your attention!
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