The simplex of invariant measures

Tomasz Downarowicz

Institute of Mathematics and Computer Science Wroclaw University of Technology, Poland

September 18, 2013

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(X, T) — topological dynamical system (X compact metric, $T : X \rightarrow X$ continuous)

 $\mathcal{M}_T(X)$ — the set of all *T*-invariant Borel probability measures (invariant measures)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(X, T) — topological dynamical system (X compact metric, $T : X \rightarrow X$ continuous)

 $\mathcal{M}_T(X)$ — the set of all *T*-invariant Borel probability measures (invariant measures)

(ロ) (同) (三) (三) (三) (三) (○) (○)

is known to be

nonempty ([1] Bogoliubov–Krylov 1937)

(X, T) — topological dynamical system (X compact metric, $T : X \rightarrow X$ continuous)

 $\mathcal{M}_T(X)$ — the set of all *T*-invariant Borel probability measures (invariant measures)

(ロ) (同) (三) (三) (三) (三) (○) (○)

is known to be

- nonempty ([1] Bogoliubov–Krylov 1937)
- convex (obvious)

(X, T) — topological dynamical system (X compact metric, $T : X \rightarrow X$ continuous)

 $\mathcal{M}_T(X)$ — the set of all *T*-invariant Borel probability measures (invariant measures)

is known to be

- nonempty ([1] Bogoliubov–Krylov 1937)
- convex (obvious)
- compact in the weak* topology (Banach–Alaoglu Theorem, Banach 1932, see e.g. [2])

(X, T) — topological dynamical system (X compact metric, $T : X \rightarrow X$ continuous)

 $\mathcal{M}_T(X)$ — the set of all *T*-invariant Borel probability measures (invariant measures)

is known to be

- nonempty ([1] Bogoliubov–Krylov 1937)
- convex (obvious)
- compact in the weak* topology (Banach–Alaoglu Theorem, Banach 1932, see e.g. [2])
- the extreme points coincide with ergodic measures

$$\operatorname{ex} \mathcal{M}_T(X) = \mathcal{M}_T^{\mathsf{e}}(X)$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

(X, T) — topological dynamical system (X compact metric, $T : X \rightarrow X$ continuous)

 $\mathcal{M}_T(X)$ — the set of all *T*-invariant Borel probability measures (invariant measures)

is known to be

- nonempty ([1] Bogoliubov–Krylov 1937)
- convex (obvious)
- compact in the weak* topology (Banach–Alaoglu Theorem, Banach 1932, see e.g. [2])
- the extreme points coincide with ergodic measures

$$\operatorname{ex} \mathcal{M}_T(X) = \mathcal{M}_T^{\mathsf{e}}(X)$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

 moreover, it is a *Choquet simplex* (see e.g. [3] Walters 1982)

Let K be a compact convex set in a locally convex metric space.

Let K be a compact convex set in a locally convex metric space.

Krein–Milman Theorem ([4] 1940 Studia Math.)
 Convex combinations of extreme points are dense in K.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Let K be a compact convex set in a locally convex metric space.

- Krein–Milman Theorem ([4] 1940 Studia Math.)
 Convex combinations of extreme points are dense in K.
- Choquet Theorem ([5] 1956) Every point is a "generalized convex combination" of the extreme points.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Let *K* be a compact convex set in a locally convex metric space.

- Krein–Milman Theorem ([4] 1940 Studia Math.)
 Convex combinations of extreme points are dense in K.
- Choquet Theorem ([5] 1956) Every point is a "generalized convex combination" of the extreme points.
- Choquet representation theorem ([6] 1956)
 K is a simplex if and only if the above combination is unique.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Let *K* be a compact convex set in a locally convex metric space.

- Krein–Milman Theorem ([4] 1940 Studia Math.)
 Convex combinations of extreme points are dense in K.
- Choquet Theorem ([5] 1956) Every point is a "generalized convex combination" of the extreme points.
- Choquet representation theorem ([6] 1956)
 K is a simplex if and only if the above combination is unique.

If
$$K = \mathcal{M}_{\mathcal{T}}(X)$$
 and $\mu \in \mathcal{M}_{\mathcal{T}}(X)$ then

$$\mu = \int_{\mathcal{M}_T^{\mathrm{e}}(X)} \nu \, d\xi_{\mu}(\nu)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(the ergodic decomposition).

Two Choquet simplices are considered identical if they are *affinely homeomorphic*:

 $K \approx K' \iff \exists (affine homeomorphism \pi : K \rightarrow K').$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Two Choquet simplices are considered identical if they are *affinely homeomorphic*:

 $K \approx K' \iff \exists (affine homeomorphism \pi : K \rightarrow K').$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Finite-dimensional simplices are characterized by their dimension $\dim(K) = \#(exK) - 1$.

Two Choquet simplices are considered identical if they are *affinely homeomorphic*:

 $K \approx K' \iff \exists (affine homeomorphism \pi : K \rightarrow K').$

Finite-dimensional simplices are characterized by their dimension $\dim(K) = \#(exK) - 1$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Two Choquet simplices are considered identical if they are *affinely homeomorphic*:

 $K \approx K' \iff \exists (affine homeomorphism \pi : K \rightarrow K').$

Finite-dimensional simplices are characterized by their dimension $\dim(K) = \#(exK) - 1$.

If ex*K* is closed (i.e. compact) then $K \approx \mathcal{M}(exK)$ (*Bauer simplex*). Finite-dimensional simplices are Bauer.

Two Bauer simplices *B* and *B'* are affinely homeomorphic if and only if exB and exB' are homeomorphic

(ロ) (同) (三) (三) (三) (三) (○) (○)

Two Bauer simplices *B* and *B'* are affinely homeomorphic if and only if exB and exB' are homeomorphic (because $B \approx \mathcal{M}(exB)$ and $B' \approx \mathcal{M}(exB')$).

Two Bauer simplices *B* and *B'* are affinely homeomorphic if and only if exB and exB' are homeomorphic (because $B \approx \mathcal{M}(exB)$ and $B' \approx \mathcal{M}(exB')$).

(ロ) (同) (三) (三) (三) (三) (○) (○)

False for general Choquet simplices!

Two Bauer simplices *B* and *B'* are affinely homeomorphic if and only if ex*B* and ex*B'* are homeomorphic (because $B \approx \mathcal{M}(exB)$ and $B' \approx \mathcal{M}(exB')$).

False for general Choquet simplices!

Two Bauer simplices *B* and *B'* are affinely homeomorphic if and only if ex*B* and ex*B'* are homeomorphic (because $B \approx \mathcal{M}(exB)$ and $B' \approx \mathcal{M}(exB')$).

False for general Choquet simplices!

Theorem ([7] Edwards, 1975)

Every Choquet simplex is affinely homeomorphic to the intersection of a decreasing sequence of Bauer simplices in some locally convex linear space.

Two Bauer simplices *B* and *B'* are affinely homeomorphic if and only if ex*B* and ex*B'* are homeomorphic (because $B \approx \mathcal{M}(exB)$ and $B' \approx \mathcal{M}(exB')$).

False for general Choquet simplices!

Theorem ([7] Edwards, 1975)

Every Choquet simplex is affinely homeomorphic to the intersection of a decreasing sequence of Bauer simplices in some locally convex linear space.

Proof very hard ...

What can the simplex of invariant measures be? What can it be in a minimal system?

What can the simplex of invariant measures be? What can it be in a minimal system?

Answers:

What can the simplex of invariant measures be?

What can it be in a minimal system?

Answers:

 in minimal systems – the singleton (irrational rotation, odometer);

(ロ) (同) (三) (三) (三) (三) (○) (○)

What can the simplex of invariant measures be?

What can it be in a minimal system?

Answers:

 in minimal systems – the singleton (irrational rotation, odometer);

(ロ) (同) (三) (三) (三) (三) (○) (○)

 in a finite disjoint union of minimal systems – finite dimensional simplex;

What can the simplex of invariant measures be?

What can it be in a minimal system?

Answers:

 in minimal systems – the singleton (irrational rotation, odometer);

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- in a finite disjoint union of minimal systems finite dimensional simplex;
- in minimal systems finite dimensional simplex ([8] Oxtoby 1952);

What can the simplex of invariant measures be?

What can it be in a minimal system?

Answers:

- in minimal systems the singleton (irrational rotation, odometer);
- in a finite disjoint union of minimal systems finite dimensional simplex;
- in minimal systems finite dimensional simplex ([8] Oxtoby 1952);
- in minimal systems infinite (ℵ₀ or 𝔅) dimensional Bauer ([9] Williams 1984);

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

What can the simplex of invariant measures be?

What can it be in a minimal system?

Answers:

- in minimal systems the singleton (irrational rotation, odometer);
- in a finite disjoint union of minimal systems finite dimensional simplex;
- in minimal systems finite dimensional simplex ([8] Oxtoby 1952);
- in minimal systems infinite (ℵ₀ or 𝔅) dimensional Bauer ([9] Williams 1984);
- in the full shift (not minimal) the Poulsen simplex (not Bauer);

What can the simplex of invariant measures be?

What can it be in a minimal system?

Answers:

- in minimal systems the singleton (irrational rotation, odometer);
- in a finite disjoint union of minimal systems finite dimensional simplex;
- in minimal systems finite dimensional simplex ([8] Oxtoby 1952);
- in minimal systems infinite (ℵ₀ or 𝔅) dimensional Bauer ([9] Williams 1984);
- in the full shift (not minimal) the Poulsen simplex (not Bauer);
- in minimal systems not Bauer ([10] D. 1988);

Theorem 1 ([11] D. 1991)

For every Choquet simplex *K* there exists a minimal subshift (X, T) (in fact a Toeplitz subshift over the dyadic odometer), for which $\mathcal{M}_T(X) \approx K$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem 1 ([11] D. 1991)

For every Choquet simplex *K* there exists a minimal subshift (X, T) (in fact a Toeplitz subshift over the dyadic odometer), for which $\mathcal{M}_T(X) \approx K$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The **main goal** of this course is to present an (almost) complete proof of this theorem.

Theorem 1 ([11] D. 1991)

For every Choquet simplex *K* there exists a minimal subshift (X, T) (in fact a Toeplitz subshift over the dyadic odometer), for which $\mathcal{M}_T(X) \approx K$.

The **main goal** of this course is to present an (almost) complete proof of this theorem.

Two essential facts from functional analysis (*Edwards' Theorem* and *Michael's Selection Theorem*) and one from topological dynamics (*relaxing minimality*) will be applied without proofs.

(日) (日) (日) (日) (日) (日) (日)

Theorem 1 ([11] D. 1991)

For every Choquet simplex *K* there exists a minimal subshift (X, T) (in fact a Toeplitz subshift over the dyadic odometer), for which $\mathcal{M}_T(X) \approx K$.

The **main goal** of this course is to present an (almost) complete proof of this theorem.

Two essential facts from functional analysis (*Edwards' Theorem* and *Michael's Selection Theorem*) and one from topological dynamics (*relaxing minimality*) will be applied without proofs.

A few easier facts will be left as exercises.

Relaxing minimality

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のQ@
A version of Furstenberg–Weiss Theorem ([12] 1989) allows to drop minimality:

A version of Furstenberg–Weiss Theorem ([12] 1989) allows to drop minimality:

Theorem ([13] D.–Lacroix 1998)

A (non-minimal) subshift with a nonperiodic minimal factor is *Borel** conjugate to a subshift which is a *minimal almost 1-1 extension* of that factor.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

A version of Furstenberg–Weiss Theorem ([12] 1989) allows to drop minimality:

Theorem ([13] D.–Lacroix 1998)

A (non-minimal) subshift with a nonperiodic minimal factor is *Borel** conjugate to a subshift which is a *minimal almost 1-1 extension* of that factor.

The simplex of invariant measures is preserved by Borel* conjugacy. A subshift which is a minimal almost 1-1 extension of an odometer is called a *Toeplitz subshift*. Thus Theorem 1 reduces to:

(ロ) (同) (三) (三) (三) (○) (○)

A version of Furstenberg–Weiss Theorem ([12] 1989) allows to drop minimality:

Theorem ([13] D.–Lacroix 1998)

A (non-minimal) subshift with a nonperiodic minimal factor is *Borel** conjugate to a subshift which is a *minimal almost 1-1 extension* of that factor.

The simplex of invariant measures is preserved by Borel* conjugacy. A subshift which is a minimal almost 1-1 extension of an odometer is called a *Toeplitz subshift*. Thus Theorem 1 reduces to:

Theorem 2 ([11])

For every Choquet simplex *K* there exists a (non-minimal) subshift (X, T) for which $\mathcal{M}_T(X) \approx K$ and which has the dyadic odometer as a factor.

 Invariant measures in subshifts, distance between measures, block manipulations, convex combinations of measures, etc.;

 Invariant measures in subshifts, distance between measures, block manipulations, convex combinations of measures, etc.;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Odometers, semicocycles;

- Invariant measures in subshifts, distance between measures, block manipulations, convex combinations of measures, etc.;
- Odometers, semicocycles;
- Homeomorphic correspondence between semicocycles and their invariant measures;

(ロ) (同) (三) (三) (三) (○) (○)

- Invariant measures in subshifts, distance between measures, block manipulations, convex combinations of measures, etc.;
- Odometers, semicocycles;
- Homeomorphic correspondence between semicocycles and their invariant measures;

(ロ) (同) (三) (三) (三) (○) (○)

Mixture of semicocycles;

- Invariant measures in subshifts, distance between measures, block manipulations, convex combinations of measures, etc.;
- Odometers, semicocycles;
- Homeomorphic correspondence between semicocycles and their invariant measures;
- Mixture of semicocycles;
- Michael's Selections Theorem ([14] Annals of Math. 1956) (We will comment on this theorem later.);

(ロ) (同) (三) (三) (三) (○) (○)

- Invariant measures in subshifts, distance between measures, block manipulations, convex combinations of measures, etc.;
- Odometers, semicocycles;
- Homeomorphic correspondence between semicocycles and their invariant measures;
- Mixture of semicocycles;
- Michael's Selections Theorem ([14] Annals of Math. 1956) (We will comment on this theorem later.);

(ロ) (同) (三) (三) (三) (○) (○)

Edwards' Theorem;

- Invariant measures in subshifts, distance between measures, block manipulations, convex combinations of measures, etc.;
- Odometers, semicocycles;
- Homeomorphic correspondence between semicocycles and their invariant measures;
- Mixture of semicocycles;
- Michael's Selections Theorem ([14] Annals of Math. 1956) (We will comment on this theorem later.);
- Edwards' Theorem;
- Exercise 1: Let π_n be a uniformly convergent sequence of homeomorphisms of a compact space into a metric space. If, for each n, the uniform distance between π_n and π_{n+1} is small enough (the bound depends on the properties of π_n), then the limit map is also a homeomorphism.

Let Λ be a finite set (called the *alphabet*). By the *shift space* we will mean $\Lambda^{\mathbb{Z}}$, the space of all bi-infinite sequences over Λ equipped with the product topology.

(ロ) (同) (三) (三) (三) (○) (○)

Let Λ be a finite set (called the *alphabet*). By the *shift space* we will mean $\Lambda^{\mathbb{Z}}$, the space of all bi-infinite sequences over Λ equipped with the product topology.

A block is a finite "word" B ∈ Λ^N (N ∈ ℝ) as well as the cylinder set {x ∈ Λ^ℤ : x[0, N − 1] = B}.

(日) (日) (日) (日) (日) (日) (日)

Let Λ be a finite set (called the *alphabet*). By the *shift space* we will mean $\Lambda^{\mathbb{Z}}$, the space of all bi-infinite sequences over Λ equipped with the product topology.

- A block is a finite "word" B ∈ Λ^N (N ∈ ℝ) as well as the cylinder set {x ∈ Λ^ℤ : x[0, N − 1] = B}.
- ▶ By Λ^* we denote the collection of all finite blocks $\bigcup_{N \in \mathbb{N}} \Lambda^N$. For $B \in \Lambda^*$ we denote by |B| the *length* of B, i.e., $B \in \Lambda^{|B|}$.

Let Λ be a finite set (called the *alphabet*). By the *shift space* we will mean $\Lambda^{\mathbb{Z}}$, the space of all bi-infinite sequences over Λ equipped with the product topology.

- A block is a finite "word" B ∈ Λ^N (N ∈ ℝ) as well as the cylinder set {x ∈ Λ^ℤ : x[0, N − 1] = B}.
- By Λ* we denote the collection of all finite blocks U_{N∈ℕ} Λ^N. For B ∈ Λ* we denote by |B| the *length* of B, i.e., B ∈ Λ^{|B|}.
- A Borel probability measure µ on Λ^ℤ is *invariant* if µ(A) = µ(T⁻¹(A)) for every Borel set A, where T is the shift map T(x)_n = x_{n+1}. In particular

$$\mu(B) = \mu(\Box B) = \sum_{a \in \Lambda} \mu(aB).$$

By cylinder values of µ we will mean the function B → µ(B) defined on Λ*.

- By cylinder values of µ we will mean the function B → µ(B) defined on Λ*.
- Exercise 2: Two invariant measures with the same cylinder values are identical.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- By cylinder values of µ we will mean the function B → µ(B) defined on Λ*.
- Exercise 2: Two invariant measures with the same cylinder values are identical.
- Exercise 3: The weak* topology on invariant measures is metrizable by the following metric:

$$d^*(\mu,
u) = \sum_{N\in\mathbb{N}}rac{2^{-N}}{N}\sum_{B\in\Lambda^N}|\mu(B)-
u(B)|.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- By cylinder values of µ we will mean the function B → µ(B) defined on Λ*.
- Exercise 2: Two invariant measures with the same cylinder values are identical.
- Exercise 3: The weak* topology on invariant measures is metrizable by the following metric:

$$d^*(\mu,
u) = \sum_{oldsymbol{N}\in\mathbb{N}}rac{2^{-oldsymbol{N}}}{oldsymbol{N}}\sum_{oldsymbol{B}\in\Lambda^N}|\mu(oldsymbol{B})-
u(oldsymbol{B})|.$$

Exercise 4: This metric is convex (the balls are convex). So, we are situated in a *locally convex space*.

Each block B determines a periodic measure μ_B supported by the (finite) orbit of the point x_B = ...BBB.... We will write d*(μ, B) instead of d*(μ, μ_B).

(ロ) (同) (三) (三) (三) (三) (○) (○)

Each block B determines a periodic measure μ_B supported by the (finite) orbit of the point x_B = ...BBB.... We will write d*(μ, B) instead of d*(μ, μ_B).

(ロ) (同) (三) (三) (三) (三) (○) (○)

• If $|C| \ll |B|$ then $\mu_B(C) \approx \operatorname{freq}_B(C)$.

- Each block B determines a periodic measure μ_B supported by the (finite) orbit of the point x_B = ...BBB.... We will write d*(μ, B) instead of d*(μ, μ_B).
- If $|C| \ll |B|$ then $\mu_B(C) \approx \operatorname{freq}_B(C)$.
- In this manner we have included blocks in the space of invariant measures.

(日) (日) (日) (日) (日) (日) (日)

- Each block B determines a periodic measure μ_B supported by the (finite) orbit of the point x_B = ...BBB.... We will write d*(μ, B) instead of d*(μ, μ_B).
- If $|C| \ll |B|$ then $\mu_B(C) \approx \operatorname{freq}_B(C)$.
- In this manner we have included blocks in the space of invariant measures.

Lemma 1 (Convex Combinations Simulation)

For every $\epsilon > 0$ there exists N such that whenever $B = B_1 B_2 \dots B_k$, where $|B_1| = |B_2| = \dots = |B_k| \ge N$ (and $k \ge 1$ is arbitrary), then

$$d^*\left(\mu_B, \frac{1}{k}\sum_{i=1}^k \mu_{B_i}\right) < \epsilon.$$

(日) (日) (日) (日) (日) (日) (日)

- Each block B determines a periodic measure μ_B supported by the (finite) orbit of the point x_B = ...BBB.... We will write d*(μ, B) instead of d*(μ, μ_B).
- If $|C| \ll |B|$ then $\mu_B(C) \approx \operatorname{freq}_B(C)$.
- In this manner we have included blocks in the space of invariant measures.

Lemma 1 (Convex Combinations Simulation)

For every $\epsilon > 0$ there exists N such that whenever $B = B_1 B_2 \dots B_k$, where $|B_1| = |B_2| = \dots = |B_k| \ge N$ (and $k \ge 1$ is arbitrary), then

$$d^*\left(\mu_B, \frac{1}{k}\sum_{i=1}^k \mu_{B_i}\right) < \epsilon.$$

Proof: Exercise 5.

A *subshift* is a shift-invariant closed subset $X \subset \Lambda^{\mathbb{Z}}$. The main object of our interest is $\mathcal{M}_{\mathcal{T}}(X)$, the Choquet simplex of all invariant measures supported by X.

A *subshift* is a shift-invariant closed subset $X \subset \Lambda^{\mathbb{Z}}$. The main object of our interest is $\mathcal{M}_{\mathcal{T}}(X)$, the Choquet simplex of all invariant measures supported by X.

► By Λ*(X) we denote the collection of all blocks that occur in the elements of X.

(ロ) (同) (三) (三) (三) (三) (○) (○)

A *subshift* is a shift-invariant closed subset $X \subset \Lambda^{\mathbb{Z}}$. The main object of our interest is $\mathcal{M}_{\mathcal{T}}(X)$, the Choquet simplex of all invariant measures supported by X.

► By Λ*(X) we denote the collection of all blocks that occur in the elements of X.

Lemma 2 (Uniform convergence of blocks)

For every $\epsilon > 0$ there exists *N* such that if $B \in \Lambda^*(X)$ and $|B| \ge N$ then

 $d^*(B, \mathcal{M}_T(X)) < \epsilon.$

・ロト・日本・日本・日本・日本

A *subshift* is a shift-invariant closed subset $X \subset \Lambda^{\mathbb{Z}}$. The main object of our interest is $\mathcal{M}_{\mathcal{T}}(X)$, the Choquet simplex of all invariant measures supported by X.

► By Λ*(X) we denote the collection of all blocks that occur in the elements of X.

Lemma 2 (Uniform convergence of blocks)

For every $\epsilon > 0$ there exists *N* such that if $B \in \Lambda^*(X)$ and $|B| \ge N$ then

 $d^*(B, \mathcal{M}_T(X)) < \epsilon.$

(日) (日) (日) (日) (日) (日) (日)

Proof: Exercise 6.

A *subshift* is a shift-invariant closed subset $X \subset \Lambda^{\mathbb{Z}}$. The main object of our interest is $\mathcal{M}_{\mathcal{T}}(X)$, the Choquet simplex of all invariant measures supported by X.

► By Λ*(X) we denote the collection of all blocks that occur in the elements of X.

Lemma 2 (Uniform convergence of blocks)

For every $\epsilon > 0$ there exists *N* such that if $B \in \Lambda^*(X)$ and $|B| \ge N$ then

 $d^*(B, \mathcal{M}_T(X)) < \epsilon.$

Proof: Exercise 6.

In particular, if (X, T) is *uniquely ergodic* then **all** sufficiently long block are close to the unique invariant measure of the subshift.

A *subshift* is a shift-invariant closed subset $X \subset \Lambda^{\mathbb{Z}}$. The main object of our interest is $\mathcal{M}_{\mathcal{T}}(X)$, the Choquet simplex of all invariant measures supported by X.

► By Λ*(X) we denote the collection of all blocks that occur in the elements of X.

Lemma 2 (Uniform convergence of blocks)

For every $\epsilon > 0$ there exists *N* such that if $B \in \Lambda^*(X)$ and $|B| \ge N$ then

 $d^*(B, \mathcal{M}_T(X)) < \epsilon.$

Proof: Exercise 6.

In particular, if (X, T) is *uniquely ergodic* then **all** sufficiently long block are close to the unique invariant measure of the subshift.

Conversely, every *ergodic* measure on X is approximated by some blocks occurring in X.

The *dyadic odometer* (G, τ) is the subshift over the countable (compact) alphabet $\mathbb{N}_0 \cup \infty$, consisting of sequences following the rule:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The *dyadic odometer* (*G*, τ) is the subshift over the countable (compact) alphabet $\mathbb{N}_0 \cup \infty$, consisting of sequences following the rule: every second term is 1,

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The *dyadic odometer* (*G*, τ) is the subshift over the countable (compact) alphabet $\mathbb{N}_0 \cup \infty$, consisting of sequences following the rule: every second term is 1, every fourth term is 2,

The *dyadic odometer* (*G*, τ) is the subshift over the countable (compact) alphabet $\mathbb{N}_0 \cup \infty$, consisting of sequences following the rule: every second term is 1, every fourth term is 2, ...,

...1213121 1213121 1213121 1213121 1213121 12131...

The *dyadic odometer* (*G*, τ) is the subshift over the countable (compact) alphabet $\mathbb{N}_0 \cup \infty$, consisting of sequences following the rule: every second term is 1, every fourth term is 2, ...,

... 1213121 121312141213121 121312141213121 12131...

(ロ) (同) (三) (三) (三) (三) (○) (○)
The *dyadic odometer* (*G*, τ) is the subshift over the countable (compact) alphabet $\mathbb{N}_0 \cup \infty$, consisting of sequences following the rule: every second term is 1, every fourth term is 2, ..., every 2^{*k*} th term is *k*.

... 12131215121312141213121 121312141213121512131...

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

The *dyadic odometer* (G, τ) is the subshift over the countable (compact) alphabet $\mathbb{N}_0 \cup \infty$, consisting of sequences following the rule: every second term is 1, every fourth term is 2, ..., every 2^k th term is *k*. At most one term ∞ is allowed.

 $\dots 12131215121312141213121\infty 121312141213121512131\dots$

(日) (日) (日) (日) (日) (日) (日)

The *dyadic odometer* (G, τ) is the subshift over the countable (compact) alphabet $\mathbb{N}_0 \cup \infty$, consisting of sequences following the rule: every second term is 1, every fourth term is 2, ..., every 2^k th term is *k*. At most one term ∞ is allowed.

$\dots 12131215121312141213121\infty 121312141213121512131\dots$

The odometer (G, τ) is conjugate to the interval map shown on the following figure, restricted to the classical Cantor set (which is invariant and on which the map is a homeomorphism).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The odometer is a rotation of a compact monothetic group, hence it is *minimal* and *uniquely ergodic*.

The unique invariant measure λ has distribution function F_{λ} equal to the Cantor staircase function.

The unique invariant measure λ has distribution function F_{λ} equal to the Cantor staircase function.

The unique invariant measure λ has distribution function F_{λ} equal to the Cantor staircase function.

The *inverse function* from [0, 1] to *G* is well defined except at dyadic rationals (other than 0 or 1), which have two-point preimages.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The unique invariant measure λ has distribution function F_{λ} equal to the Cantor staircase function.

The *inverse function* from [0, 1] to *G* is well defined except at dyadic rationals (other than 0 or 1), which have two-point preimages. (By the way, the union of the preimages of all dyadic rationals coincides with the orbit of 0.)

The unique invariant measure λ has distribution function F_{λ} equal to the Cantor staircase function.

The *inverse function* from [0, 1] to *G* is well defined except at dyadic rationals (other than 0 or 1), which have two-point preimages. (By the way, the union of the preimages of all dyadic rationals coincides with the orbit of 0.)

For $t \in [0, 1]$ we define $g_t = \min(F_{\lambda}^{-1}(t))$.

Let Λ be a finite alphabet. Throughout this course we fix a number $\gamma \in (\frac{7}{8}, 1)$, which is *not a dyadic rational* (so that g_{γ} is not in the orbit of 0).

Let Λ be a finite alphabet. Throughout this course we fix a number $\gamma \in (\frac{7}{8}, 1)$, which is *not a dyadic rational* (so that g_{γ} is not in the orbit of 0).

(ロ) (同) (三) (三) (三) (三) (○) (○)

A function $f : G \rightarrow \Lambda$ is called a *semicocycle* if it satisfies:

Let Λ be a finite alphabet. Throughout this course we fix a number $\gamma \in (\frac{7}{8}, 1)$, which is *not a dyadic rational* (so that g_{γ} is not in the orbit of 0).

(ロ) (同) (三) (三) (三) (三) (○) (○)

A function $f : G \to \Lambda$ is called a *semicocycle* if it satisfies:

f has at most countably many discontinuity points,

Let Λ be a finite alphabet. Throughout this course we fix a number $\gamma \in (\frac{7}{8}, 1)$, which is *not a dyadic rational* (so that g_{γ} is not in the orbit of 0).

A function $f : G \to \Lambda$ is called a *semicocycle* if it satisfies:

- f has at most countably many discontinuity points,
- all the discontinuities are "jumps" (non-removable),

Let Λ be a finite alphabet. Throughout this course we fix a number $\gamma \in (\frac{7}{8}, 1)$, which is *not a dyadic rational* (so that g_{γ} is not in the orbit of 0).

A function $f : G \to \Lambda$ is called a *semicocycle* if it satisfies:

- f has at most countably many discontinuity points,
- all the discontinuities are "jumps" (non-removable),
- none of the discontinuity points is in the orbit of 0,

Let Λ be a finite alphabet. Throughout this course we fix a number $\gamma \in (\frac{7}{8}, 1)$, which is *not a dyadic rational* (so that g_{γ} is not in the orbit of 0).

A function $f : G \to \Lambda$ is called a *semicocycle* if it satisfies:

- f has at most countably many discontinuity points,
- all the discontinuities are "jumps" (non-removable),
- none of the discontinuity points is in the orbit of 0,
- ► one symbol (say "black") is assumed on [g_γ, 1] (and nowhere else).

Let Λ be a finite alphabet. Throughout this course we fix a number $\gamma \in (\frac{7}{8}, 1)$, which is *not a dyadic rational* (so that g_{γ} is not in the orbit of 0).

A function $f : G \to \Lambda$ is called a *semicocycle* if it satisfies:

- f has at most countably many discontinuity points,
- all the discontinuities are "jumps" (non-removable),
- none of the discontinuity points is in the orbit of 0,
- ► one symbol (say "black") is assumed on [g_γ, 1] (and nowhere else).

(日) (日) (日) (日) (日) (日) (日)

Let Λ be a finite alphabet. Throughout this course we fix a number $\gamma \in (\frac{7}{8}, 1)$, which is *not a dyadic rational* (so that g_{γ} is not in the orbit of 0).

A function $f : G \to \Lambda$ is called a *semicocycle* if it satisfies:

- f has at most countably many discontinuity points,
- all the discontinuities are "jumps" (non-removable),
- none of the discontinuity points is in the orbit of 0,
- ► one symbol (say "black") is assumed on [g_γ, 1] (and nowhere else).

We will identify semicocycles which differ only at the discontinuities. In such space we apply the L^1 -distance:

$$d_1(f,h) = \lambda \{g : f(g) \neq h(g)\}.$$

Let (X_f, T) be the subshift over Λ consisting of points $x \in \Lambda^{\mathbb{Z}}$ obtained in the following manner:

Let (X_f, T) be the subshift over Λ consisting of points $x \in \Lambda^{\mathbb{Z}}$ obtained in the following manner:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► Take *g* ∈ *G*,

Let (X_f, T) be the subshift over Λ consisting of points $x \in \Lambda^{\mathbb{Z}}$ obtained in the following manner:

- ► Take *g* ∈ *G*,
- for n∈ ℤ let x(n) = f(τⁿ(g)) (multiple choice if τⁿ(g) is a discontinuity point).

Let (X_f, T) be the subshift over Λ consisting of points $x \in \Lambda^{\mathbb{Z}}$ obtained in the following manner:

- ► Take *g* ∈ *G*,
- for n∈ ℤ let x(n) = f(τⁿ(g)) (multiple choice if τⁿ(g) is a discontinuity point).

Exercise 7: Each *x* is obtained from a *unique g* which can be determined by only seeing the "black" symbols in *x*. The mapping $x \mapsto g$ is a **continuous** factor map from (X_f, T) onto (G, τ) .

(日) (日) (日) (日) (日) (日) (日)

Let (X_f, T) be the subshift over Λ consisting of points $x \in \Lambda^{\mathbb{Z}}$ obtained in the following manner:

- ► Take *g* ∈ *G*,
- for n∈ Z let x(n) = f(τⁿ(g)) (multiple choice if τⁿ(g) is a discontinuity point).

Exercise 7: Each *x* is obtained from a *unique g* which can be determined by only seeing the "black" symbols in *x*. The mapping $x \mapsto g$ is a **continuous** factor map from (X_f, T) onto (G, τ) .

 $0 \in G$ produces a *unique* sequence $x_f \in X_f$ because the orbit of 0 passes through points where *f* admits unique values. This implies that (X_f, T) is an almost 1-1 extension of (G, τ) .

Let (X_f, T) be the subshift over Λ consisting of points $x \in \Lambda^{\mathbb{Z}}$ obtained in the following manner:

- ► Take *g* ∈ *G*,
- for n∈ Z let x(n) = f(τⁿ(g)) (multiple choice if τⁿ(g) is a discontinuity point).

Exercise 7: Each *x* is obtained from a *unique g* which can be determined by only seeing the "black" symbols in *x*. The mapping $x \mapsto g$ is a **continuous** factor map from (X_f, T) onto (G, τ) .

 $0 \in G$ produces a *unique* sequence $x_f \in X_f$ because the orbit of 0 passes through points where *f* admits unique values. This implies that (X_f, T) is an almost 1-1 extension of (G, τ) .

Moreover, only countably many points $g \in G$ produce multiple points x, hence (X_f, T) is uniquely ergodic and isomorphic to (G, λ, τ) . We will denote the unique invariant measure of (X_f, T) by μ_f .

The map $f \mapsto \mu_f$ is injective and continuous (d_1 vs. d^*).

The map $f \mapsto \mu_f$ is injective and continuous (d_1 vs. d^*).

Proof. Suppose $d_1(f, h) > 0$. We will show that X_f and X_h are disjoint; this will imply injectivity of $f \mapsto \mu_f$. Suppose $x \in X_f \cap X_h$. Because *f* and *h* have the same "black" part, *x* determines the same element *g* in either systems. But then f = h on the (dense) orbit of *g*, which implies that f = h at all common continuity points, hence on a full measure set, a contradiction.

The map $f \mapsto \mu_f$ is injective and continuous (d_1 vs. d^*).

Proof. Suppose $d_1(f, h) > 0$. We will show that X_f and X_h are disjoint; this will imply injectivity of $f \mapsto \mu_f$. Suppose $x \in X_f \cap X_h$. Because *f* and *h* have the same "black" part, *x* determines the same element *g* in either systems. But then f = h on the (dense) orbit of *g*, which implies that f = h at all common continuity points, hence on a full measure set, a contradiction.

We pass to proving continuity. We will show that in fact $d^*(\mu_f, \mu_h) \leq d_1(f, h)$.

The map $f \mapsto \mu_f$ is injective and continuous (d_1 vs. d^*).

Proof. Suppose $d_1(f, h) > 0$. We will show that X_f and X_h are disjoint; this will imply injectivity of $f \mapsto \mu_f$. Suppose $x \in X_f \cap X_h$. Because *f* and *h* have the same "black" part, *x* determines the same element *g* in either systems. But then f = h on the (dense) orbit of *g*, which implies that f = h at all common continuity points, hence on a full measure set, a contradiction.

We pass to proving continuity. We will show that in fact $d^*(\mu_f, \mu_h) \leq d_1(f, h)$.

It is an easy observation that the set $\{g : f(g) = h(g)\}$ is relatively both open and closed within the set where both functions are continuous. Hence, by adding or subtracting at most countably many points, at which either *f* or *g* is discontinuous (hence not belonging to the orbit of 0) we can make this set either open or closed, without changing its measure.

Applying this to g = 0 in the odometer (whose orbit never visits the discontinuities) and the set $\{g : f(g) = h(g)\}$, we get that the density of the event $f(\tau^n(0)) \neq h(\tau^n(0))$ equals $\lambda(F) = d_1(f, h)$.

Applying this to g = 0 in the odometer (whose orbit never visits the discontinuities) and the set $\{g : f(g) = h(g)\}$, we get that the density of the event $f(\tau^n(0)) \neq h(\tau^n(0))$ equals $\lambda(F) = d_1(f, h)$.

This means that if x_f and x_h denote the sequences determined by f and h along the orbit of 0, then for any fixed $N \in \mathbb{N}$ the event $x_f[n, n + N - 1] \neq x_h[n, n + N - 1]$ has upper density at most $Nd_1(f, h)$.

Applying this to g = 0 in the odometer (whose orbit never visits the discontinuities) and the set $\{g : f(g) = h(g)\}$, we get that the density of the event $f(\tau^n(0)) \neq h(\tau^n(0))$ equals $\lambda(F) = d_1(f, h)$.

This means that if x_f and x_h denote the sequences determined by f and h along the orbit of 0, then for any fixed $N \in \mathbb{N}$ the event $x_f[n, n + N - 1] \neq x_h[n, n + N - 1]$ has upper density at most $Nd_1(f, h)$.

Because x_f and x_h are generic for μ_f and μ_h , respectively, this upper density estimates from above the sum $\sum_{B \in \Lambda^N} |\mu_f(B) - \mu_h(B)|.$

Applying this to g = 0 in the odometer (whose orbit never visits the discontinuities) and the set $\{g : f(g) = h(g)\}$, we get that the density of the event $f(\tau^n(0)) \neq h(\tau^n(0))$ equals $\lambda(F) = d_1(f, h)$.

This means that if x_f and x_h denote the sequences determined by f and h along the orbit of 0, then for any fixed $N \in \mathbb{N}$ the event $x_f[n, n + N - 1] \neq x_h[n, n + N - 1]$ has upper density at most $Nd_1(f, h)$.

Because x_f and x_h are generic for μ_f and μ_h , respectively, this upper density estimates from above the sum $\sum_{B \in \Lambda^N} |\mu_f(B) - \mu_h(B)|.$

Plugging this into the formula for $d^*(\mu_f, \mu_h)$ we get $d^*(\mu_f, \mu_h) \leq d_1(f, h)$.

Homeomorphic embedding of compacta

Theorem 3

On every compact metric set *Y* there exists a homeomorphic embedding $y \mapsto f_y$ into semicocycles (with d_1).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Homeomorphic embedding of compacta

Theorem 3

On every compact metric set *Y* there exists a homeomorphic embedding $y \mapsto f_y$ into semicocycles (with d_1).

Proof. We can assume that *Y* is a subset of the Hilbert cube, i.e., there exists a sequence of continuous functions $\phi_n : Y \to [0, 1]$ which separate points of *Y*. By an easy modification we can assume that

(日) (日) (日) (日) (日) (日) (日)

Homeomorphic embedding of compacta

Theorem 3

On every compact metric set *Y* there exists a homeomorphic embedding $y \mapsto f_y$ into semicocycles (with d_1).

Proof. We can assume that *Y* is a subset of the Hilbert cube, i.e., there exists a sequence of continuous functions $\phi_n : Y \to [0, 1]$ which separate points of *Y*. By an easy modification we can assume that

(日) (日) (日) (日) (日) (日) (日)

• each ϕ_n is strictly positive,
Theorem 3

On every compact metric set *Y* there exists a homeomorphic embedding $y \mapsto f_y$ into semicocycles (with d_1).

Proof. We can assume that *Y* is a subset of the Hilbert cube, i.e., there exists a sequence of continuous functions $\phi_n : Y \to [0, 1]$ which separate points of *Y*. By an easy modification we can assume that

(日) (日) (日) (日) (日) (日) (日)

• each ϕ_n is strictly positive,

$$\blacktriangleright \sum_{n} \phi_{n} \equiv \gamma.$$

Theorem 3

On every compact metric set *Y* there exists a homeomorphic embedding $y \mapsto f_y$ into semicocycles (with d_1).

Proof. We can assume that *Y* is a subset of the Hilbert cube, i.e., there exists a sequence of continuous functions $\phi_n : Y \to [0, 1]$ which separate points of *Y*. By an easy modification we can assume that

• each ϕ_n is strictly positive,

$$\blacktriangleright \sum_{n} \phi_{n} \equiv \gamma.$$

For each $y \in Y$ we define an increasing sequence $(g_n(y))_{n \in \mathbb{N}}$ of points in *G* by

$$g_n(y) = g_{\sum_{i=1}^n \phi_n(y)}.$$

(日) (日) (日) (日) (日) (日) (日)

Theorem 3

On every compact metric set *Y* there exists a homeomorphic embedding $y \mapsto f_y$ into semicocycles (with d_1).

Proof. We can assume that *Y* is a subset of the Hilbert cube, i.e., there exists a sequence of continuous functions $\phi_n : Y \to [0, 1]$ which separate points of *Y*. By an easy modification we can assume that

• each ϕ_n is strictly positive,

$$\blacktriangleright \sum_{n} \phi_{n} \equiv \gamma.$$

For each $y \in Y$ we define an increasing sequence $(g_n(y))_{n \in \mathbb{N}}$ of points in *G* by

$$g_n(y) = g_{\sum_{i=1}^n \phi_n(y)}.$$

(The interval $[0, g_1(y)]$ has measure $\phi_1(y)$ and for each $n \ge 2$ the interval $(g_{n-1}(y), g_n(y)]$ has measure $\phi_n(y)$.)

For $y \in Y$ we define the semicocycle f_y with values in $\Lambda = \{0, 1, 2\}$ by

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For $y \in Y$ we define the semicocycle f_y with values in $\Lambda = \{0, 1, 2\}$ by

$$f_{y}(g) = egin{cases} 0 & ext{if } g \in [0, g_{1}(y)] ext{ or } g \in (g_{2n}(y), g_{2n+1}(y)] ext{ for some } n \geq 1, \ 1 & ext{if } g \in (g_{2n-1}(y), g_{2n}(y)] ext{ for some } n \geq 1, \ 2 & ext{if } g_{\gamma} \geq g. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For $y \in Y$ we define the semicocycle f_y with values in $\Lambda = \{0, 1, 2\}$ by

$$f_{y}(g) = egin{cases} 0 & ext{if } g \in [0, g_{1}(y)] ext{ or } g \in (g_{2n}(y), g_{2n+1}(y)] ext{ for some } n \geq 1, \ 1 & ext{if } g \in (g_{2n-1}(y), g_{2n}(y)] ext{ for some } n \geq 1, \ 2 & ext{if } g_{\gamma} \geq g. \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(The function f_y assumes alternating values 0 and 1 on intervals of measures $\phi_n(y)$.)

For $y \in Y$ we define the semicocycle f_y with values in $\Lambda = \{0, 1, 2\}$ by

$$f_{y}(g) = \begin{cases} 0 & \text{if } g \in [0, g_{1}(y)] \text{ or } g \in (g_{2n}(y), g_{2n+1}(y)] \text{ for some } n \geq 1, \\ 1 & \text{if } g \in (g_{2n-1}(y), g_{2n}(y)] \text{ for some } n \geq 1, \\ 2 & \text{if } g_{\gamma} \geq g. \end{cases}$$

(The function f_y assumes alternating values 0 and 1 on intervals of measures $\phi_n(y)$.)

(ロ) (同) (三) (三) (三) (○) (○)

For $y \in Y$ we define the semicocycle f_y with values in $\Lambda = \{0, 1, 2\}$ by

$$f_{y}(g) = \begin{cases} 0 & \text{if } g \in [0, g_{1}(y)] \text{ or } g \in (g_{2n}(y), g_{2n+1}(y)] \text{ for some } n \geq 1, \\ 1 & \text{if } g \in (g_{2n-1}(y), g_{2n}(y)] \text{ for some } n \geq 1, \\ 2 & \text{if } g_{\gamma} \geq g. \end{cases}$$

(The function f_y assumes alternating values 0 and 1 on intervals of measures $\phi_n(y)$.)

Clearly, the map $y \mapsto f_y$ is continuous in d_1 , moreover, different points yield essentially different semicocycles. By compactness of *Y*, this is a homeomorphism.

Let f_1, \ldots, f_k , be finitely many Λ -valued semicocycles and let p_1, \ldots, p_k be a probability vector.

We will write g_i instead of $g_{p_1+p_2+\cdots+p_i}$ $(i = 1, 2, \dots, k)$.

Let f_1, \ldots, f_k , be finitely many Λ -valued semicocycles and let p_1, \ldots, p_k be a probability vector. We will write g_i instead of $g_{p_1+p_2+\cdots+p_i}$ $(i = 1, 2, \ldots, k)$.

(ロ) (同) (三) (三) (三) (○) (○)

For example, for $p_1 = 1/3$, $p_2 = 1/6$, $p_3 = 1/2$ we have:

Let f_1, \ldots, f_k , be finitely many Λ -valued semicocycles and let p_1, \ldots, p_k be a probability vector. We will write g_i instead of $g_{p_1+p_2+\cdots+p_i}$ $(i = 1, 2, \ldots, k)$. For example, for $p_1 = 1/3$, $p_2 = 1/6$, $p_3 = 1/2$ we have:

(日) (日) (日) (日) (日) (日) (日)

Let f_1, \ldots, f_k , be finitely many Λ -valued semicocycles and let p_1, \ldots, p_k be a probability vector. We will write g_i instead of $g_{p_1+p_2+\cdots+p_i}$ $(i = 1, 2, \ldots, k)$. For example, for $p_1 = 1/3$, $p_2 = 1/6$, $p_3 = 1/2$ we have:

The *first order mixture of* (f_i) with coefficients (p_i) is the function

$$\mathsf{MIX}_1((f_i),(p_i)) = f_1 \mathbf{1}_{[0,g_1]} + \sum_{i=2}^k f_i \mathbf{1}_{(g_{i-1},g_i]}.$$

Let f_1, \ldots, f_k , be finitely many Λ -valued semicocycles and let p_1, \ldots, p_k be a probability vector. We will write g_i instead of $g_{p_1+p_2+\cdots+p_i}$ $(i = 1, 2, \ldots, k)$. For example, for $p_1 = 1/3$, $p_2 = 1/6$, $p_3 = 1/2$ we have:

$$-f_1$$
 $-f_2$ $-f_3$ $-$ common

The *first order mixture of* (f_i) with coefficients (p_i) is the function

$$\mathsf{MIX}_1((f_i),(p_i)) = f_1 \mathbf{1}_{[0,g_1]} + \sum_{i=2}^k f_i \mathbf{1}_{(g_{i-1},g_i]}.$$

Let f_1, \ldots, f_k , be finitely many Λ -valued semicocycles and let p_1, \ldots, p_k be a probability vector. We will write g_i instead of $g_{p_1+p_2+\cdots+p_i}$ $(i = 1, 2, \ldots, k)$. For example, for $p_1 = 1/3$, $p_2 = 1/6$, $p_3 = 1/2$ we have:

The *first order mixture of* (f_i) with coefficients (p_i) is the function

$$\mathsf{MIX}_1((f_i),(p_i)) = f_1 \mathbf{1}_{[0,g_1]} + \sum_{i=2}^k f_i \mathbf{1}_{(g_{i-1},g_i]}.$$

(日) (日) (日) (日) (日) (日) (日)

Let f_1, \ldots, f_k , be finitely many Λ -valued semicocycles and let p_1, \ldots, p_k be a probability vector. We will write g_i instead of $g_{p_1+p_2+\cdots+p_i}$ $(i = 1, 2, \ldots, k)$. For example, for $p_1 = 1/3$, $p_2 = 1/6$, $p_3 = 1/2$ we have:

The *first order mixture of* (f_i) with coefficients (p_i) is the function

$$\mathsf{MIX}_1((f_i),(p_i)) = f_1 \mathbf{1}_{[0,g_1]} + \sum_{i=2}^k f_i \mathbf{1}_{(g_{i-1},g_i]}.$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Let f_1, \ldots, f_k , be finitely many Λ -valued semicocycles and let p_1, \ldots, p_k be a probability vector. We will write g_i instead of $g_{p_1+p_2+\cdots+p_i}$ $(i = 1, 2, \ldots, k)$. For example, for $p_1 = 1/3$, $p_2 = 1/6$, $p_3 = 1/2$ we have:

The *first order mixture of* (f_i) with coefficients (p_i) is the function

$$\mathsf{MIX}_1((f_i),(p_i)) = f_1 \mathbf{1}_{[0,g_1]} + \sum_{i=2}^k f_i \mathbf{1}_{(g_{i-1},g_i]}$$

(日) (日) (日) (日) (日) (日) (日)

Clearly, this is again a semicocycle and its unique invariant measure depends continuously on the coefficients p_i .

For *N* of the form 2^j we also define the *Nth order mixture of* (f_i) with coefficients (p_i) . Namely, we divide the odometer into *N* equal parts (each homeomorphic to the whole) and we apply the mixture on each part separately (see the figure for N = 4).

The sequence x_f , where $f = MIX_N((f_i), (p_i))$ has the following properties:

For *N* of the form 2^j we also define the *Nth order mixture of* (f_i) with coefficients (p_i) . Namely, we divide the odometer into *N* equal parts (each homeomorphic to the whole) and we apply the mixture on each part separately (see the figure for N = 4).

The sequence x_f , where $f = MIX_N((f_i), (p_i))$ has the following properties:

(日) (日) (日) (日) (日) (日) (日)

▶ It is built of blocks of length *N* occurring in x_{f_i} (*i* ∈ *I*);

For *N* of the form 2^j we also define the *Nth order mixture of* (f_i) with coefficients (p_i) . Namely, we divide the odometer into *N* equal parts (each homeomorphic to the whole) and we apply the mixture on each part separately (see the figure for N = 4).

The sequence x_f , where $f = MIX_N((f_i), (p_i))$ has the following properties:

- ▶ It is built of blocks of length *N* occurring in x_{f_i} (*i* ∈ *I*);
- for each *i* the blocks coming from x_{fi} occupy a subset of density p_i.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

For *N* of the form 2^j we also define the *Nth order mixture of* (f_i) with coefficients (p_i) . Namely, we divide the odometer into *N* equal parts (each homeomorphic to the whole) and we apply the mixture on each part separately (see the figure for N = 4).

The sequence x_f , where $f = MIX_N((f_i), (p_i))$ has the following properties:

- ▶ It is built of blocks of length *N* occurring in x_{f_i} (*i* ∈ *I*);
- for each *i* the blocks coming from x_{fi} occupy a subset of density p_i.
 - ...011020102010110220102201120101122000...
 - $\dots 110201200111101000102010210021101201\dots$
 - ...220111021022000112210201102212200212...
 - ...**01100120**1022**11020010**0201**12012110**0212...

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

Theorem 4

Fix some semicocycles f_1, \ldots, f_k . Given $\epsilon > 0$ there exists $N = 2^j$ such that if $f = MIX_N((f_i), (p_i))$ then

$$d^*\left(\mu_f, \sum_{i=1}^k p_i \mu_{f_i}\right) < \epsilon.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem 4

Fix some semicocycles f_1, \ldots, f_k . Given $\epsilon > 0$ there exists $N = 2^j$ such that if $f = MIX_N((f_i), (p_i))$ then

$$d^*\left(\mu_f, \sum_{i=1}^k p_i \mu_{f_i}
ight) < \epsilon.$$

Proof. Since each x_{f_i} generates a uniquely ergodic subshift, by **Lemma 2**, there exists *N* such that **any** *N*-block of x_{f_i} is close to μ_{f_i} (regardless of *i*).

(日) (日) (日) (日) (日) (日) (日)

Theorem 4

Fix some semicocycles f_1, \ldots, f_k . Given $\epsilon > 0$ there exists $N = 2^j$ such that if $f = MIX_N((f_i), (p_i))$ then

$$d^*\left(\mu_f, \sum_{i=1}^k p_i \mu_{f_i}\right) < \epsilon.$$

Proof. Since each x_{f_i} generates a uniquely ergodic subshift, by **Lemma 2**, there exists *N* such that **any** *N*-block of x_{f_i} is close to μ_{f_i} (regardless of *i*).

The block $B = x_f[0, mN - 1]$ is, for large enough *m*, on one hand close to μ_f , on the other hand, it is a concatenation of the *N*-blocks coming from x_{f_i} with proportions nearly p_i .

Theorem 4

Fix some semicocycles f_1, \ldots, f_k . Given $\epsilon > 0$ there exists $N = 2^j$ such that if $f = MIX_N((f_i), (p_i))$ then

$$d^*\left(\mu_f, \sum_{i=1}^k p_i \mu_{f_i}\right) < \epsilon.$$

Proof. Since each x_{f_i} generates a uniquely ergodic subshift, by **Lemma 2**, there exists *N* such that **any** *N*-block of x_{f_i} is close to μ_{f_i} (regardless of *i*).

The block $B = x_f[0, mN - 1]$ is, for large enough *m*, on one hand close to μ_f , on the other hand, it is a concatenation of the *N*-blocks coming from x_{f_i} with proportions nearly p_i .

By **Lemma 1**, *B* is close to the arithmetic average of the measures represented by the involved *N*-blocks, hence to the combination of μ_{f_i} with coefficients p_i .

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの

We begin by representing the simplex K as a decreasing intersection of Bauer simplices B_n .

We begin by representing the simplex K as a decreasing intersection of Bauer simplices B_n .

Step 1: By **Theorem 3**, on the **compact** set exB_1 there is a homeomorphic embedding $y \mapsto f_y^{(1)}$ (with d_1). By **Lemma 3**, $y \mapsto \mu_{f_y^{(1)}}$ is a homeomorphic embedding, too (with d^*). Thus the simplex of invariant measures spanned by $\{\mu_{f_y^{(1)}} : y \in exB_1\}$ (denoted B'_1) is affinely homeomorphic to B_1 (such implication holds only for Bauer simplices).

(日) (日) (日) (日) (日) (日) (日)

We begin by representing the simplex K as a decreasing intersection of Bauer simplices B_n .

Step 1: By **Theorem 3**, on the **compact** set exB_1 there is a homeomorphic embedding $y \mapsto f_y^{(1)}$ (with d_1). By **Lemma 3**, $y \mapsto \mu_{f_y^{(1)}}$ is a homeomorphic embedding, too (with d^*). Thus the simplex of invariant measures spanned by $\{\mu_{f_y^{(1)}} : y \in exB_1\}$ (denoted B'_1) is affinely homeomorphic to B_1 (such implication holds only for Bauer simplices). (We are not checking whether the corresponding union of the systems $X_{f_x^{(1)}}$ is closed.)

(日) (日) (日) (日) (日) (日) (日)

We begin by representing the simplex K as a decreasing intersection of Bauer simplices B_n .

Step 1: By **Theorem 3**, on the **compact** set exB_1 there is a homeomorphic embedding $y \mapsto f_y^{(1)}$ (with d_1). By **Lemma 3**, $y \mapsto \mu_{f_y^{(1)}}$ is a homeomorphic embedding, too (with d^*). Thus the simplex of invariant measures spanned by $\{\mu_{f_y^{(1)}} : y \in exB_1\}$ (denoted B'_1) is affinely homeomorphic to B_1 (such implication holds only for Bauer simplices). (We are not checking whether the corresponding union of the systems $X_{f_y^{(1)}}$ is closed.) We denote by $\pi_1 : B_1 \to B'_1$ the corresponding affine homeomorphism.

We begin by representing the simplex K as a decreasing intersection of Bauer simplices B_n .

Step 1: By **Theorem 3**, on the **compact** set exB_1 there is a homeomorphic embedding $y \mapsto f_y^{(1)}$ (with d_1). By **Lemma 3**, $y \mapsto \mu_{f_y^{(1)}}$ is a homeomorphic embedding, too (with d^*). Thus the simplex of invariant measures spanned by $\{\mu_{f_y^{(1)}} : y \in exB_1\}$ (denoted B'_1) is affinely homeomorphic to B_1 (such implication holds only for Bauer simplices). (We are not checking whether the corresponding union of the systems $X_{f_y^{(1)}}$ is closed.) We denote by $\pi_1 : B_1 \to B'_1$ the corresponding affine homeomorphism.

Inductive step: Suppose we have defined a homeomorphic embedding $y \mapsto f_y^{(n)}$ on exB_n and extended it to an affine homeomorphism π_n on B_n onto the simplex B'_n (of measures) spanned by $\{\mu_{f_y^{(n)}} : y \in exB_n\}$. By change of the metric in B_n we can assume that π_n is an isometry. We need to slightly modify the map π_n so that it sends every point of B_n (not only extreme) to an ergodic measure (given by a semicocycle). *This will occupy 4 slides*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We need to slightly modify the map π_n so that it sends every point of B_n (not only extreme) to an ergodic measure (given by a semicocycle). *This will occupy 4 slides*.

Fix a small ϵ_n . Let $\{s_1, \ldots, s_k\}$ be ϵ_n -dense in ex B_n . Then the simplex S spanned be these points is ϵ_n -dense in B_n . For each point $y \in B_n$ the intersection $S_y^{\epsilon_n}$ of S with the open ϵ_n -ball around y is convex, nonempty, and the multifunction $y \mapsto S_y^{\epsilon_n}$ is *lower semicontinuous*. By Michael's Selection Theorem, there exists a **continuous** map $s : B_n \to S$ such that $d(y, s(y)) < \epsilon_n$.
We need to slightly modify the map π_n so that it sends every point of B_n (not only extreme) to an ergodic measure (given by a semicocycle). *This will occupy 4 slides*.

Fix a small ϵ_n . Let $\{s_1, \ldots, s_k\}$ be ϵ_n -dense in ex B_n . Then the simplex S spanned be these points is ϵ_n -dense in B_n . For each point $y \in B_n$ the intersection $S_y^{\epsilon_n}$ of S with the open ϵ_n -ball around y is convex, nonempty, and the multifunction $y \mapsto S_y^{\epsilon_n}$ is *lower semicontinuous*. By Michael's Selection Theorem, there exists a **continuous** map $s : B_n \to S$ such that $d(y, s(y)) < \epsilon_n$.

A multifunction from a topological space X into (subsets of) another topological space Y is *lower semicontinuous* if the set of points whose images intersect an open set is open.

A multifunction from a topological space X into (subsets of) another topological space Y is *lower semicontinuous* if the set of points whose images intersect an open set is open.

Theorem (Michael, Annals of Mathematics 1956)

Let X and Y be a metric space and a Banach space, respectively. Let S be a lower semicontinuous multifucntion from X to Y with *nonempty convex* images. Then S admits a continuous selection.

(ロ) (同) (三) (三) (三) (三) (○) (○)

A multifunction from a topological space X into (subsets of) another topological space Y is *lower semicontinuous* if the set of points whose images intersect an open set is open.

Theorem (Michael, Annals of Mathematics 1956)

Let X and Y be a metric space and a Banach space, respectively. Let S be a lower semicontinuous multifucntion from X to Y with *nonempty convex* images. Then S admits a continuous selection.

Comment: We are using this theorem in case X is compact and Y is finite-dimensional. In this case the proof is fairly easy. As Exercise 8, try proving the one-dimensional case (the images are intervals).

A multifunction from a topological space X into (subsets of) another topological space Y is *lower semicontinuous* if the set of points whose images intersect an open set is open.

Theorem (Michael, Annals of Mathematics 1956)

Let X and Y be a metric space and a Banach space, respectively. Let S be a lower semicontinuous multifucntion from X to Y with *nonempty convex* images. Then S admits a continuous selection.

Comment: We are using this theorem in case X is compact and Y is finite-dimensional. In this case the proof is fairly easy. As Exercise 8, try proving the one-dimensional case (the images are intervals).

Hint: On a compact domain, if f > 0 is lower semicontinuous and (f_n) is a sequence of continuous functions increasing to f, then $f_n > 0$ for some n.

$$\pi_n \circ \boldsymbol{s}(\boldsymbol{y}) = \sum_{i=1}^k \boldsymbol{p}_i(\boldsymbol{y}) \mu_{f_i},$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

where $p_1(y), \ldots, p_k(y)$ is a probability vector depending continuously on *y*.

$$\pi_n \circ \boldsymbol{s}(\boldsymbol{y}) = \sum_{i=1}^k \boldsymbol{p}_i(\boldsymbol{y}) \mu_{f_i},$$

where $p_1(y), \ldots, p_k(y)$ is a probability vector depending continuously on *y*.

$$\pi_n \circ \boldsymbol{s}(\boldsymbol{y}) = \sum_{i=1}^k \boldsymbol{p}_i(\boldsymbol{y}) \mu_{f_i},$$

where $p_1(y), \ldots, p_k(y)$ is a probability vector depending continuously on *y*. We choose *N* according to **Lemmas 1, 2,** and **Theorem 4** with the parameter ϵ_n , and we define

$$\pi_n \circ \boldsymbol{s}(\boldsymbol{y}) = \sum_{i=1}^k \boldsymbol{p}_i(\boldsymbol{y}) \mu_{f_i},$$

where $p_1(y), \ldots, p_k(y)$ is a probability vector depending continuously on *y*. We choose *N* according to **Lemmas 1, 2,** and **Theorem 4** with the parameter ϵ_n , and we define

The assignment $\pi'_n(y) = \mu_{h_y^{(n)}}$ is continuous and, by **Theorem 4**, this map is ϵ_n -close to $\pi_n \circ s$. Thus, π'_n is $2\epsilon_n$ -close to the *affine* map π_n . (Unfortunately, neither $y \mapsto h_y^{(n)}$ nor π'_n needs to be injective.)

by **Theorem 4**, this map is ϵ_n -close to $\pi_n \circ s$. Thus, π'_n is $2\epsilon_n$ -close to the *affine* map π_n . (Unfortunately, neither $y \mapsto h_y^{(n)}$ nor π'_n needs to be injective.)

Inside B_n there is B_{n+1} . The map $y \mapsto f_y^{(n+1)}$ will be defined on exB_{n+1} as a slight *injective* modification of $y \mapsto h_y^{(n)}$.

by **Theorem 4**, this map is ϵ_n -close to $\pi_n \circ s$. Thus, π'_n is $2\epsilon_n$ -close to the *affine* map π_n . (Unfortunately, neither $y \mapsto h_y^{(n)}$ nor π'_n needs to be injective.)

Inside B_n there is B_{n+1} . The map $y \mapsto f_y^{(n+1)}$ will be defined on exB_{n+1} as a slight *injective* modification of $y \mapsto h_y^{(n)}$.

► By **Theorem 3**, there exists homeomorphic embedding $y \mapsto f_y$ of exB_{n+1} .

by **Theorem 4**, this map is ϵ_n -close to $\pi_n \circ s$. Thus, π'_n is $2\epsilon_n$ -close to the *affine* map π_n . (Unfortunately, neither $y \mapsto h_y^{(n)}$ nor π'_n needs to be injective.)

Inside B_n there is B_{n+1} . The map $y \mapsto f_y^{(n+1)}$ will be defined on exB_{n+1} as a slight *injective* modification of $y \mapsto h_y^{(n)}$.

► By **Theorem 3**, there exists homeomorphic embedding $y \mapsto f_y$ of ex B_{n+1} .

(日) (日) (日) (日) (日) (日) (日)

• *G* splits into *N* disjoint sets homeomorphic to *G*. Let $\theta : G_0 \to G$ be the homeomerphism. Now, $f_y \circ \theta$ is a "rescaled semicocycle" defined on G_0 .

by **Theorem 4**, this map is ϵ_n -close to $\pi_n \circ s$. Thus, π'_n is $2\epsilon_n$ -close to the *affine* map π_n . (Unfortunately, neither $y \mapsto h_y^{(n)}$ nor π'_n needs to be injective.)

Inside B_n there is B_{n+1} . The map $y \mapsto f_y^{(n+1)}$ will be defined on exB_{n+1} as a slight *injective* modification of $y \mapsto h_y^{(n)}$.

- ▶ By **Theorem 3**, there exists homeomorphic embedding $y \mapsto f_y$ of ex B_{n+1} .
- *G* splits into *N* disjoint sets homeomorphic to *G*. Let $\theta : G_0 \to G$ be the homeomerphism. Now, $f_y \circ \theta$ is a "rescaled semicocycle" defined on G_0 .
- We define

$$f_y^{(n+1)}(g) = egin{cases} f_y \circ heta(g) & g \in G_0, f_y \circ heta(g)
eq 2 \ 0 & g \in G_0, f_y \circ heta(g) = 2 \ h_y^{(n)}(g) & g
eq G_0. \end{cases}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

(We artificially change the "black" value 2 appearing on G_0 to 0, in order to maintain the requirement that a semicocycle assumes the 2 excluively on $[g_{\gamma}, 1]$. This does not affect injectivity.)

(We artificially change the "black" value 2 appearing on G_0 to 0, in order to maintain the requirement that a semicocycle assumes the 2 excluively on $[g_{\gamma}, 1]$. This does not affect injectivity.)

(日) (日) (日) (日) (日) (日) (日)

So defined map $y \mapsto f_y^{(n+1)}$ is *injective* and continuous on exB_{n+1} thus it is a homeomorphic embedding.

If *N* is large enough then $d_1(f_y^{(n+1)}, h_y^{(n)}) < \epsilon_n$. Thus $d^*(\mu_{f_y^{(n+1)}}, \pi'_n(y)) < \epsilon_n$. Letting $\pi_{n+1}(y) = \mu_{f_y^{(n+1)}}$, we get $d^*(\pi_{n+1}(y), \pi_n(y)) < 3\epsilon_n$

on ex B_{n+1} . Both maps extend as affine homeomorphisms to B_{n+1} . Since d^* is convex, the above estimate holds on B_{n+1} .

If *N* is large enough then $d_1(f_y^{(n+1)}, h_y^{(n)}) < \epsilon_n$. Thus $d^*(\mu_{f_y^{(n+1)}}, \pi'_n(y)) < \epsilon_n$. Letting $\pi_{n+1}(y) = \mu_{f_y^{(n+1)}}$, we get

 $d^*(\pi_{n+1}(y),\pi_n(y)) < 3\epsilon_n$

on ex B_{n+1} . Both maps extend as affine homeomorphisms to B_{n+1} . Since d^* is convex, the above estimate holds on B_{n+1} .

If *N* is large enough then $d_1(f_y^{(n+1)}, h_y^{(n)}) < \epsilon_n$. Thus $d^*(\mu_{f_y^{(n+1)}}, \pi'_n(y)) < \epsilon_n$. Letting $\pi_{n+1}(y) = \mu_{f_y^{(n+1)}}$, we get

 $d^*(\pi_{n+1}(y),\pi_n(y)) < 3\epsilon_n$

on ex B_{n+1} . Both maps extend as affine homeomorphisms to B_{n+1} . Since d^* is convex, the above estimate holds on B_{n+1} .

If *N* is large enough then $d_1(f_y^{(n+1)}, h_y^{(n)}) < \epsilon_n$. Thus $d^*(\mu_{f_y^{(n+1)}}, \pi'_n(y)) < \epsilon_n$. Letting $\pi_{n+1}(y) = \mu_{f_y^{(n+1)}}$, we get

 $d^*(\pi_{n+1}(y),\pi_n(y)) < 3\epsilon_n$

on ex B_{n+1} . Both maps extend as affine homeomorphisms to B_{n+1} . Since d^* is convex, the above estimate holds on B_{n+1} .

(日) (日) (日) (日) (日) (日) (日)

End of induction.

On *K* we have defined a sequence of affine homeomorphisms π_n into the closed convex hull of the ergodic measures arising from semicocycles. Choosing the parameters ϵ_n small enough, by Exercise 1, the limit map π_∞ is also an affine homeomorphism.

(ロ) (同) (三) (三) (三) (三) (○) (○)

On *K* we have defined a sequence of affine homeomorphisms π_n into the closed convex hull of the ergodic measures arising from semicocycles. Choosing the parameters ϵ_n small enough, by Exercise 1, the limit map π_∞ is also an affine homeomorphism.

We have also defined maps π'_n acting on B_n (hence also on K) by assigning semicocycles $h_y^{(n)}$ (and then taking the corresponding measures). These maps are neither injective nor affine, yet **they converge to the same limit map** π_∞ .

On *K* we have defined a sequence of affine homeomorphisms π_n into the closed convex hull of the ergodic measures arising from semicocycles. Choosing the parameters ϵ_n small enough, by Exercise 1, the limit map π_∞ is also an affine homeomorphism.

We have also defined maps π'_n acting on B_n (hence also on K) by assigning semicocycles $h_y^{(n)}$ (and then taking the corresponding measures). These maps are neither injective nor affine, yet **they converge to the same limit map** π_{∞} .

We define the target subshift space as

$$X = \bigcap_{n \ge 1} \bigcup_{m \ge n} \bigcup_{y \in K} X_{h_y^{(m)}} \quad (= \bigcap_{n \ge 1} X_n).$$

It remains to show that $\mathcal{M}_T(X) = \pi_\infty(K)$.

For the converse, it suffices to show that any *ergodic* measure μ on X is in $\pi_{\infty}(K)$. Fix *n* and let *N* be the parameter used in the *n*th construction step. Now the assertions of **Lemma 1** and **Lemma 2** are fulfilled up to ϵ_n .

・ロト・日本・日本・日本・日本

For the converse, it suffices to show that any *ergodic* measure μ on X is in $\pi_{\infty}(K)$. Fix *n* and let *N* be the parameter used in the *n*th construction step. Now the assertions of **Lemma 1** and **Lemma 2** are fulfilled up to ϵ_n .

Let *B* be a block occurring in *X*, approximating μ up to ϵ_n . We can assume that $|B| \gg N$. By definition of *X*, *B* must occur in $X_{h_v^{(m)}}$ for some m > n.

For the converse, it suffices to show that any *ergodic* measure μ on X is in $\pi_{\infty}(K)$. Fix *n* and let *N* be the parameter used in the *n*th construction step. Now the assertions of **Lemma 1** and **Lemma 2** are fulfilled up to ϵ_n .

Let *B* be a block occurring in *X*, approximating μ up to ϵ_n . We can assume that $|B| \gg N$. By definition of *X*, *B* must occur in $X_{h_v^{(m)}}$ for some m > n.

It follows from the construction, that all symbolic sequences built after step n are infinite concatenations of the building N-blocks constructed in step n (perhaps with the first symbols changed later, which is negligible).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

By **Lemma 1**, *B* is ϵ_n -close to a convex convex combination of the measures determined by the *N*-blocks constructed in step *n*, and by **Lemma 2** each of these measures is ϵ_n -close the the uniquely ergodic measure $\mu_{f_y^{(n)}} = \pi_n(y)$ for some $y \in exB_n$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

By **Lemma 1**, *B* is ϵ_n -close to a convex convex combination of the measures determined by the *N*-blocks constructed in step *n*, and by **Lemma 2** each of these measures is ϵ_n -close the the uniquely ergodic measure $\mu_{f_v^{(n)}} = \pi_n(y)$ for some $y \in exB_n$.

・ロト・日本・モト・モー ショー ショー

Combining the estimates μ is $3\epsilon_n$ -close to the set $\pi_n(B_n)$. Thus...

By **Lemma 1**, *B* is ϵ_n -close to a convex convex combination of the measures determined by the *N*-blocks constructed in step *n*, and by **Lemma 2** each of these measures is ϵ_n -close the the uniquely ergodic measure $\mu_{f_v^{(n)}} = \pi_n(y)$ for some $y \in exB_n$.

Combining the estimates μ is $3\epsilon_n$ -close to the set $\pi_n(B_n)$. Thus...

$$\mu = \lim_{n} \pi_n(y_n)$$
 for a sequence $y_n \in B_n$.

・ロト・日本・モト・モー ショー ショー

By **Lemma 1**, *B* is ϵ_n -close to a convex convex combination of the measures determined by the *N*-blocks constructed in step *n*, and by **Lemma 2** each of these measures is ϵ_n -close the the uniquely ergodic measure $\mu_{f_v^{(n)}} = \pi_n(y)$ for some $y \in exB_n$.

Combining the estimates μ is $3\epsilon_n$ -close to the set $\pi_n(B_n)$. Thus...

$$\mu = \lim_{n} \pi_n(y_n)$$
 for a sequence $y_n \in B_n$.

Passing to a subsequence we can assume that $y_n \rightarrow y \in K$.

By **Lemma 1**, *B* is ϵ_n -close to a convex convex combination of the measures determined by the *N*-blocks constructed in step *n*, and by **Lemma 2** each of these measures is ϵ_n -close the the uniquely ergodic measure $\mu_{f_v^{(n)}} = \pi_n(y)$ for some $y \in exB_n$.

Combining the estimates μ is $3\epsilon_n$ -close to the set $\pi_n(B_n)$. Thus...

$$\mu = \lim_{n} \pi_n(y_n)$$
 for a sequence $y_n \in B_n$

Passing to a subsequence we can assume that $y_n \rightarrow y \in K$.

Fix m > n. Clearly, π_n is defined at y_m and here it differs from π_m by less than $\sum_{i=n}^{\infty} 3\epsilon_i$, which we can make smaller than $4\epsilon_n$. If *m* is large enough, we also have $d^*(\pi_n(y_m), \pi_n(y)) < \epsilon_n$. Thus...

By **Lemma 1**, *B* is ϵ_n -close to a convex convex combination of the measures determined by the *N*-blocks constructed in step *n*, and by **Lemma 2** each of these measures is ϵ_n -close the the uniquely ergodic measure $\mu_{f_v^{(n)}} = \pi_n(y)$ for some $y \in exB_n$.

Combining the estimates μ is $3\epsilon_n$ -close to the set $\pi_n(B_n)$. Thus...

$$\mu = \lim_{n} \pi_n(y_n)$$
 for a sequence $y_n \in B_n$.

Passing to a subsequence we can assume that $y_n \rightarrow y \in K$.

Fix m > n. Clearly, π_n is defined at y_m and here it differs from π_m by less than $\sum_{i=n}^{\infty} 3\epsilon_i$, which we can make smaller than $4\epsilon_n$. If *m* is large enough, we also have $d^*(\pi_n(y_m), \pi_n(y)) < \epsilon_n$. Thus...

$$\mu \overset{\mathbf{3}\epsilon_m < \epsilon_n}{\approx} \pi_m(\mathbf{y}_m) \overset{\mathbf{4}\epsilon_n}{\approx} \pi_n(\mathbf{y}_m) \overset{\epsilon_n}{\approx} \pi_n(\mathbf{y}) \overset{\mathbf{4}\epsilon_n}{\approx} \pi_\infty(\mathbf{y}).$$

By **Lemma 1**, *B* is ϵ_n -close to a convex convex combination of the measures determined by the *N*-blocks constructed in step *n*, and by **Lemma 2** each of these measures is ϵ_n -close the the uniquely ergodic measure $\mu_{f_v^{(n)}} = \pi_n(y)$ for some $y \in exB_n$.

Combining the estimates μ is $3\epsilon_n$ -close to the set $\pi_n(B_n)$. Thus...

$$\mu = \lim_{n} \pi_n(y_n)$$
 for a sequence $y_n \in B_n$.

Passing to a subsequence we can assume that $y_n \rightarrow y \in K$.

Fix m > n. Clearly, π_n is defined at y_m and here it differs from π_m by less than $\sum_{i=n}^{\infty} 3\epsilon_i$, which we can make smaller than $4\epsilon_n$. If *m* is large enough, we also have $d^*(\pi_n(y_m), \pi_n(y)) < \epsilon_n$. Thus...

$$\mu \overset{3\epsilon_m < \epsilon_n}{\approx} \pi_m(\mathbf{y}_m) \overset{4\epsilon_n}{\approx} \pi_n(\mathbf{y}_m) \overset{\epsilon_n}{\approx} \pi_n(\mathbf{y}) \overset{\epsilon_n}{\approx} \pi_\infty(\mathbf{y}).$$

Since the extremes do not depend on n, $\mu = \pi_{\infty}(y) \in \pi_{\infty}(K)$.
We have constructed a subshift *X* such that *K* is affinely homeomorphic (via π_{∞}) to $\mathcal{M}_{\mathcal{T}}(X)$.

We have constructed a subshift *X* such that *K* is affinely homeomorphic (via π_{∞}) to $\mathcal{M}_{\mathcal{T}}(X)$.

The last thing to do is checking that *X* factors to the odometer.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We have constructed a subshift *X* such that *K* is affinely homeomorphic (via π_{∞}) to $\mathcal{M}_{\mathcal{T}}(X)$.

The last thing to do is checking that X factors to the odometer.

This is true for each system $X_{h_y^{(m)}}$ ($y \in K$) and the factor map is determined continuously by the "black symbols" (the same in all semicocycles) through a procedure (code) not depending on m or y.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We have constructed a subshift *X* such that *K* is affinely homeomorphic (via π_{∞}) to $\mathcal{M}_{\mathcal{T}}(X)$.

The last thing to do is checking that X factors to the odometer.

This is true for each system $X_{h_y^{(m)}}$ ($y \in K$) and the factor map is determined continuously by the "black symbols" (the same in all semicocycles) through a procedure (code) not depending on m or y.

In other words, the code is uniformly continuous on the union $\bigcup_{m\geq 1} \bigcup_{y\in K} X_{h_y^{(m)}}$, and hence extends continuously to the closure X_1 .

We have constructed a subshift *X* such that *K* is affinely homeomorphic (via π_{∞}) to $\mathcal{M}_{\mathcal{T}}(X)$.

The last thing to do is checking that X factors to the odometer.

This is true for each system $X_{h_y^{(m)}}$ ($y \in K$) and the factor map is determined continuously by the "black symbols" (the same in all semicocycles) through a procedure (code) not depending on m or y.

In other words, the code is uniformly continuous on the union $\bigcup_{m\geq 1} \bigcup_{y\in K} X_{h_y^{(m)}}$, and hence extends continuously to the closure X_1 .

Clearly, it applies to the smaller space X as well.

We have constructed a subshift *X* such that *K* is affinely homeomorphic (via π_{∞}) to $\mathcal{M}_{\mathcal{T}}(X)$.

The last thing to do is checking that *X* factors to the odometer.

This is true for each system $X_{h_y^{(m)}}$ ($y \in K$) and the factor map is determined continuously by the "black symbols" (the same in all semicocycles) through a procedure (code) not depending on m or y.

In other words, the code is uniformly continuous on the union $\bigcup_{m\geq 1} \bigcup_{y\in K} X_{h_y^{(m)}}$, and hence extends continuously to the closure X_1 .

Clearly, it applies to the smaller space X as well.

THE END

References

(in the order of appearance)

- Bogoliubov, N. N. and Krylov, N. M. (1937) La theorie generalie de la mesure dans son application a l'etude de systemes dynamiques de la mecanique non-lineaire, Ann. Math. II (in French) (Annals of Mathematics) 38 (1), 65–113
- (Banach–Alaoglu Theorem) see: Rudin, W. (1991) Functional Analysis. Second edn., International Series in Pure and Applied Mathematics. New York: McGraw-Hill. (Section 3.15, p. 68)
- (Ergodic decomposition) see: Walters, P. (1982) An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79, New York: Springer-Verlag. (Chapter 6)
- 4. Krein, M. and Milman, D. (1940) On extreme points of regular convex sets, Studia Mathematica 9, 133–138
- Choquet, G. (1956) Existence des représentations intégrales au moyen des points extrémaux dans les cônes convexes, C.R. Acad. Sci. Paris 243, 699–702
- Choquet, G. (1956) Existence et unicité des représentations intégrales au moyen des points extrémaux dans les cônes convexes. Séminaire Bourbaki 139, 15pp.
- Edwards, D. A. (1975) Systèmes projectifs d'ensembles convexes compacts, Bull. Soc. Math. France 103, 225–240
- 8. Oxtoby, J. C. (1952) Ergodic sets. Bull. Amer. Math. Soc., 58, 116-136
- 9. Williams, S. (1984) Toeplitz minimal flows which are not uniquely ergodic, Z. Wahr. Verw. Geb. 67, 95-107
- Downarowicz, T. (1998) A minimal 0-1 flow with noncompact set of ergodic measures, Probab. Th. Rel. Fields 79, 29–35
- Downarowicz, T. (1991) The Choquet simplex of invariant measures for minimal flows, Isr. J. Math. 74, 241–256
- 12. Furstenberg, H. and Weiss, B., (1989) On almost 1-1 extensions, Isr. J. Math. 65, 311-322
- Downarowicz, T. and Lacroix, Y. (1998) Almost 1-1 extensions of Furstenberg-Weiss type, Studia Math. 130, 149–170
- 14. Michael, E. (1956) Continuous selections I, Ann. of Math. 63, 361-353